New reactor antineutrino spectra 6th international Workshop on Low energy neutrino physics

Th. A. Mueller

Laboratoire Leprince-Ringuet CNRS/IN2P3* & CEA Centre de Saclay / Irfu

November 9, 2011

*Present institute

New reactor antineutrino spectra, 2 ref. papers

• Improved predictions of reactor antineutrino spectra.

Phys. Rev. C83, 054615 (2011)

Th. A. Mueller¹, D. Lhuillier¹, M. Fallot²,
A. Letourneau¹, S. Cormon², M. Fechner¹,
L. Giot², T. Lasserre¹, J. Martino²,
G. Mention¹, A. Porta², F. Yermia²

¹ CEA Saclay - Irfu, France

² CNRS/IN2P3 Subatech Nantes, France

• On the determination of anti-neutrino spectra from nuclear reactors.

Phys. Rev. C84, 024617 (2011)

 $\mathsf{P}.\ \mathsf{Huber}^1$

¹ Virginia tech, USA

Antineutrino spectrum emitted by a reactor

• The prediction of reactor ν spectrum is the dominant source of systematic error for single detector reactor neutrino experiments

$$\Phi_{\nu}(E,t) = \frac{P_{\rm th}}{\sum_{k} \alpha_{k}(t)E_{k}} \times \sum_{k} \alpha_{k}(t)S_{k}(E) \qquad k = \ ^{235}{\rm U,} \ ^{238}{\rm U,} \ ^{239}{\rm Pu,} \ ^{241}{\rm Pu}$$

- What is needed?
 - $\label{eq:relation} \textcircled{\begin{tabular}{lll} \bullet \\ \bullet \\ \delta P_{\rm th} \leq 1\% \end{array} } Reactor data: thermal power,$
 - **2** Nuclear databases: E released per fissions of isotope $k, \, \delta E_k \approx 0.3\%$
 - Reactor evolution codes: fraction of fissions of isotope k, $\delta \alpha_k \approx \%$ large anti-cor. @ fixed $P_{\rm th}$
 - $\textcircled{O} \ \nu \ {\rm spectrum \ per \ fission}$

The guts of $S_k(E)$

• Sum of all fission products' activities:

$$S_k(E) = \sum_{f=1}^{N_f} A_f(t) \times S_f(E)$$

• Sum of all β -branches of each fission product:

$$S_f(E) = \sum_{b=1}^{N_b} BR_f^b \times S_f^b(Z_f, A_f, E_{0,f}^b, E)$$

• Theory of β -decay:

$$\begin{split} S_{f}^{b}(Z_{f},A_{f},E_{0,f}^{b},E) &= \overbrace{K_{f}^{b}}^{\text{Normalization}} \times \overbrace{\mathcal{F}(Z_{f},A_{f},E)}^{\text{Fermi function}} \\ &\times \underbrace{pE(E-E_{0,f}^{b})^{2}}_{\text{Phase space}} \times \underbrace{C_{f}^{b}(E)}_{\text{Shape factor}} \times \underbrace{\left(1 + \underbrace{\delta_{f}^{b}(Z_{f},A_{f},E)}_{\text{Corrections}}\right)}_{\text{Corrections}} \end{split}$$

• Corrections to Fermi theory of β -decay :

 $\delta^b_f(Z_f, A_f, E) = G_{\nu(\mathsf{QED})} + L_{0(\mathsf{coulomb\ size})} + C_{(\mathsf{weak\ size})} + S_{(\mathsf{screening})} + \delta_{\mathsf{WM}(\mathsf{weak\ magnetism})}$

Corrections to Fermi Theory

taken from P. Huber Phys. Rev. C84, 024617 (2011)

Complementary approaches to compute the ν flux

The ILL electron data anchorage

- Accurate electron spectra measurements @ ILL (1980-89)
 - I High resolution electromagnetic spectrometer
 - $\ensuremath{ 2 \ }$ Intense and pure thermal n spectrum from the core

Unique reference to be met by any other measurement and/or calculation

$\beta \rightarrow \nu$ conversion

 β -branch level

• Exact conversion requires complete knowledge from fission yield down to β -transition between parent ground (or isomeric) state and daughter states

fission product level

• Lot of relevant quantities: Z, A, endpoints, J^{π} , nuclear matrix element, branching ratios, fission yields, lifetime... but scarce data as E_0 increases

ILL data: conversion to ν spectra

• Fit total β spectrum with a sum of 30 effective branches determined by iterative method (instead of ≈ 10000 real branches)

- $\bullet\,$ Convert each effective β branch to ν branch of through energy conservation
- Sum all ν branches to get total ν spectrum

K. Schreckenbach et al. Phys. Lett. B99, 251 (1981)

ILL antineutrino spectra

Emitted

Emitted v per fission Detected v per 10⁴⁴ fissions 235 235 20 ²³⁹Pu ²³⁹Pu 18 ²⁴¹Pu ²⁴¹Pu 16 0.8 10 0.6 0.4 0.2 3 5 8 q 3 5 q 6 6 v kinetic energy (MeV) v kinetic energy (MeV)

Reference spectra over the last 25 years

Detected

ILL ν spectra (cont'd)

- Conversion error from envelop of numerical studies
- Corrections to Fermi theory in the effective branches:
 - What $Z? \rightarrow$ mean fit on nuclear data $Z = f(E_0)$

$$Z(E_0) = 49.5 - 0.7E_0 - 0.09E_0^2,$$
$$Z > 34$$

• Effective
$$L_0 + \delta_{WM}$$
 corrections

$$\Delta N_{\nu}^{L_0, \text{WM}}(E_{\nu}) = 0.65 \times (E_{\nu} - 4 \text{ MeV})\%$$

Can we do better?

New mixed approach

Ratio of prediction / reference ILL data

- ILL β data anchor point
- Fit of residual: five effective branches are fitted to the remaining 10%

 \rightarrow suppresses error of full ab initio approach

 "True" distribution of all known β-branches describes
 > 90% of ILL electron data
 → reduces sensitivity to virtual branches approx.

New mixed approach (cont'd)

- Corrected Fermi theory applied on all β -branches
- $\bullet~+3\%$ normalization shift with respect to old ν spectrum
- Similar result for all isotopes (²³⁵U, ²³⁹Pu, ²⁴¹Pu)
- Stringent tests performed, origin of the biais identified

NB: this +3% shift is above the IBD threshold, the total integral of emitted spectrum remains unchanged (1 β and 1 ν per decay)

Consistency check

- Define "true" β and ν spectra from reduced set of well-known branches from ENSDF nuclei database. "Perfect knowledge" of both β and ν spectra.
- Apply exact same OLD conversion procedure to true β spectrum
- Compare converted ν spectrum to the true one

 \Rightarrow OLD technique leads to a -3% bias w.r.t the true ν spectrum

Origin of the 3% shift - E < 4 MeV

• Effective linear correction $\Delta N_{\nu}^{L_0,\text{WM}}(E_{\nu}) = 0.65 \times (E_{\nu} - 4 \text{ MeV})\%$ of ILL data replaced by correction at β -branch level:

$$L_0 pprox - rac{10Zlpha R}{9\hbar c} imes E$$
 and $\delta_{
m WM} pprox rac{4}{3} rac{\mu_p - \mu_n}{M_N} |rac{G_V}{G_A}| imes E$

- Correct a bias. Assume 100% syst. error
- Still the correction at branch level neglects all effects of nuclear structure Uncertainty could be larger than 100%?

Origin of the 3% shift - E > 4 MeV

• Mean fit of nuclear charge $Z(E_0) = 49.5 - 0.7E_0 - 0.09E_0^2$, $Z \ge 34$ doesn't reflect accurately enough the Z distribution

- Mixed approach:
 - ILL conversion procedure have 2 independent biases ($\approx 1.5\%$ each in total detected rate):
 - Low energy: correction to Fermi theory should be applied at branch level
 - High energy: mean Z fit is not accurate enough
 - Combination of all "well known" nuclear data can provide a good proxy for neutrino spectra ($\approx 90\%$ of experimental spectrum described)
- Revisit conversion procedure:
 - Apply all above
 - Complementary approach, minimizing the use of nuclear data

\rightarrow P. Huber, Phys. Rev. C84, 024617 (2011)

Th. A. Mueller

Well established deviation from ILL spectra

- Confirms global increase of predicted spectrum
- Extra deviation at high energy from more complete correction to Fermi theory (weak interaction in the finite volume of the parent nucleus)
- Fixes remaining oscillations of mixed-approach prediction

Mean nuclear charge

• Demonstrate that proper weighting by fission yield and by branching ratio when fitting the mean nuclear charge cures the conversion bias at high energy

• Quite robust with respect to approx of poorly known nuclei

Conversion with virtual branches: bias and uncertainties

- Total spectra built from JEFF (fission yields) and ENSDF (β-spectra) nuclear databases ⇒ proxy for real reference spectra
- Complete numerical studies of the conversion procedure to determine the size of bias as well as the uncertainty for a given data set and number of branches

Weak magnetism

 $\delta_{\rm WM} \approx \frac{4}{3} \frac{\mu_p - \mu_n}{M_N} |\frac{g_V}{g_A}| \times E \approx 0.48\% / {\rm MeV} \times E \qquad {\rm assume \ 100\% \ error}$

dacas	,	T > T.	F	Г	h	÷	6	b/Aa	dN/dF
uecay		$J_i \rightarrow J_f$	$L\gamma$	¹ M1	07		C C	0y/AC	unv/uL
			[keV]	[eV]		[s]			[%MeV ⁻¹]
6 He \rightarrow	⁶ Li	$0^+ \rightarrow 1^+$	3560	8.2	72	805	2.77	4.33	0.65
$^{12}N \rightarrow$	¹² c	$1^+ \rightarrow 0^+$	15110	43.6	38	13100	0.685	4.61	0.60
$^{12}B \rightarrow$	^{12}C	$1^+ \rightarrow 0^+$	15110	43.6	38	11600	0.727	4.34	0.62
18 Ne \rightarrow	¹⁸ F	$0^+ \rightarrow 1^+$	1040	0.268	247	1230	2.24	6.13	0.81
$^{20}F \rightarrow$	20 Ne	$2^+ \rightarrow 2^+$	5790	2.55	64.5	93300	0.257	12.5	1.72
$^{26}Si \rightarrow$	26 Al	$0^+ \rightarrow 1^+$	2700	0.0950	50.9	3550	1.32	1.48	0.19
$^{34}P \rightarrow$	34 S	$1^+ \rightarrow 0^+$	5380	0.00494	5.38	145000	0.206	0.766	0.11
58 Cu \rightarrow	⁵⁸ Ni	$1^+ \rightarrow 0^+$	7390	0.475	55.9	74100	0.288	3.34	0.45
$^{64}Cu \rightarrow$	64 Zn	$1^+ \rightarrow 0^+$	3187	0.000147	3.83	200000	0.176	0.341	0.05
$^{66}Cu \rightarrow$	⁶⁶ Zn	$1^+ \rightarrow 0^+$	3230	0.00112	10.7	214000	0.17	0.955	0.14
142 Pm \rightarrow	$^{142}\mathrm{Nd}$	$1^+ \rightarrow 0^+$	2590	0.000587	23.2	31600	0.441	0.371	0.05
144 Eu \rightarrow	$^{144}\mathrm{Sm}$	$1^+ \rightarrow 0^+$	3970	0.0950	158	31500	0.442	2.48	0.33
$^{14}O \rightarrow$	^{14}N	$0^+ \rightarrow 1^+$	2310	0.0067	9.16	1.9×10^{7}	0.018	36.3	4.97
$^{14}C \rightarrow$	^{14}N	$0^+ \rightarrow 1^+$	2310	0.0067	9.16	1.1×10^{9}	0.00237	276	37.6
$^{32}Si \rightarrow$	³² P	$0^+ \rightarrow 1^+$	513	0.000264	39.8	1.55×10^{8}	0.00631	197	26.8
$^{32}P \rightarrow$	${}^{32}s$	$1^+ \rightarrow 0^+$	4700	0.00171	3.66	7.94×10^7	0.00881	13	1.78

Experimental slope in good agreement for transitions with low ft values

Contribution of large ft's in fission neutrino spectra?

Gamow-Teller decays and the associated parameters needed for a computation of the weak magnetism slope parameter using the CVC hypothesis.

Ab-initio approach

MURE evolution code: core composition & off-equilibrium effects (see http://www.oecd-nea.org/tools/abstract/detail/nea-1845)

- Full simulation of reactor core for absolute prediction of isotopes inventory
 → 10-20% accuracy, not enough for osc. analysis
- Relative off-equilibrium effect: close to inverse β-decay threshold, a significant fraction of the ν spectrum takes week to reach equilibrium → sizeable correction of ILL data

$^{238}\mathrm{U}$ reference spectrum

- No measurement of total β -spectrum available yet
- Updated prediction using the ab-initio approach $\approx 10\%$ above previous calculations, with uncertainties in the 10-20% range

• Upcoming results from ²³⁸U irradiation in fast neutron flux of FRM-II reactor (München) by N. Haag & K. Schreckenbach \rightarrow New conversion procedure to be appplied on β data

Th. A. Mueller

Conclusions and perspectives

- ILL electron data are high quality data
- Their conversion to antineutrino was biased at the few % level by the way the corrections to Fermi theory were implemented
- Current normalization and shape errors are not fully under control
 ⇒ Size and uncertainty of the weak magnetism correction might be
 under-estimated
- Normalization and shape of ²³⁵U and Pu isotopes are highly correlated *ILL data normalization is common to all spectra, correction term are basically common to all spectra*

Upcoming spectral data collected at reactors might bring stringent enough constraint on the shape to confirm/update our error budget