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• Motivations

– Current loops in non-equilibrium steady states 
– Convection cells in real life

• Model specifications
• Simulation studies

– How currents are measured and displayed: j, ψ, and ω
– Non-trivial steady currents vs. fluctuations around zero

• Theoretical considerations
– An “absolutely minimal” (exactly solvable) system 
– Mesoscopic approach (mean-field, continuum, hydrodynamics)

• What else? (Surprises even above Tc and in 1-D)



Equilibrium vs. Non-equilibrium SM
• Interacting many-particle systems – Statistical Mechanics

• 3-step program for a system in thermal equilibrium:

– Specify configurations of system: {C}
– Specify internal energy for each configuration: H[C]
– Exploit Boltzmann/Gibbs framework
– Known P[C]; hard part is to compute averages of observables
– If time dependence wanted, then

 impose t reversal dynamics (detailed balance)  
 all probability currents vanish in stationary state
 similar to electrostatics 

Motivations

P[C]  δ(E H[C]) P[C]  exp{H[C]/kT}



Equilibrium vs. Non-equilibrium SM

• How do systems (in steady state) far-from-equilibrium differ?
– Systems neither totally isolated nor in contact with just one bath
– “Open systems,” coupled to many reservoirs
– Specify rules for evolution for P[C,t]; may or may not have H[C]
– Rules typically violate t reversal (no detailed balance)  

 probability currents can exist in stationary state: K*[C,C’]
 similar to magnetostatics

Motivations

• Interacting many-particle systems – Statistical Mechanics

P* = ???

K* = ???



• Many examples of systems far from equilibrium:
• Common features:

– Interacting many-particle systems
– Subject to external forces and/or open boundaries
– Non-zero transport of mass, energy, etc.
– Dynamics breaks detailed balance (microscopic time reversal)
– Even steady states (from simple microscopics) are typically…

Motivations

Non-Equilibrium Statistical Mechanics



• Many examples of systems far from equilibrium:
• Common features… COMPLEX!!                  
• How to proceed ?

– Biologist approach: one particular system at a time
– Physicist/mathematician approach:

Motivations

Non-Equilibrium Statistical Mechanics

Study simple models 
and

Look for essential, universal properties!



• Many examples of systems far from equilibrium:
• Common features… COMPLEX!!                  
• How to proceed ? seek essential features in simple models

• Physical manifestations of K* ’s
– energy flux through the system
– particle currents (especially loops in steady states!)
– 

Motivations

Non-Equilibrium Statistical Mechanics

Convection Cells 



Convection cells in daily life

• Rayleigh-Benard

Motivations

Rayleigh-Bernard convection in cooking oil 
(photo by Ben Schultz April 2009)

http://www.aep.cornell.edu/eng10_student_course.cfm?function=detail&courseID=86



http://www.catea.gatech.edu/grade/mecheng/mod8/mod8.html



http://www.airphotona.com/image.asp?imageid=712

Gravity (in addition to T)

an essential ingredient here!



Convection cells in daily life

• Kelvin-Helmholtz

Motivations

http://en.wikipedia.org/wiki/File:Wavecloudsduval.jpg



“Kelvin-Helmholtz clouds”
Benjamin Foster; http://www.ucar.edu/news/events/moreclouds.shtm



http://en.wikipedia.org/wiki/File:Kelvin_Helmholz_wave_clouds.jpg

Shear
an essential ingredient here!



Convection cells in daily life

• Rayleigh-Benard ( T + g )

• Kelvin-Helmholtz  ( shear )

• 

Motivations

Both rely on the 
presence of

“external” driving 
forces

Both rely on the 
presence of

density fields
as well as

velocity fields



Are there minimal conditions 
for convection cells to exist?

M. Pleimling, B. Schmittmann, and R. K. P. Zia, 
EPL 89, 50001 (2010)

Motivations

• Temperature gradient 
(external – drive into non-equilibrium steady state)

• Density gradient
(“internal” – from spontaneous sym. breaking)

no gravity, no shear, no (independent)  velocity fields



Model Specs- reminders

Ising lattice gas (equilibrium)

• d - dimensional lattice (square in d=2) 

• particle or hole at each site ( x  (x,y) )

• C : {n(x)};  n = 1 or 0 ;  Σ n(x) = N

• H(C) = – J Σ n(x) n(x′)      x,x′ n.n. pairs;  PBC;  J > 0 .

• P(C) known : exp{ –H(C)/kBT}

• displays phase transitions if d > 1



Ising lattice gas (equilibrium)

• evolves by Kawasaki dynamics:
– chose random n.n. pair 
– exchange with prob. min{1, e–ΔH(C)/kT } (Metropolis rates)
– preserves N, total particle number (magnetization)
– system settles into thermal equilibrium…

• d=2: { Lx , Ly } ;  half-filled: N = LxLy / 2 
• T > TOnsager ≈ 0.5673J/kB : homogeneous
• T < TO : inhomogeneous…

– co-existence of high- and low-density regions
– separated by microscopically thin interfaces
– regions are strips aligned with min{Lx ,Ly}

Model Specs- reminders

In general, 6 bonds can change



Ising lattice gas (equilibrium)

• evolves by Kawasaki dynamics:
– chose random n.n. pair 
– exchange with prob. min{1, e–ΔH(C)/kT } (Metropolis rates)
– preserves N, total particle number (magnetization)
– system settles into thermal equilibrium…

• d=2: { Lx , Ly } ;  half-filled: N = LxLy / 2 
• T > TOnsager ≈ 0.5673J/kB : homogeneous
• T < TO : inhomogeneous…

– co-existence of high- and low-density regions
– separated by microscopically thin interfaces
– regions are strips aligned with min{Lx ,Ly}

Model Specs- reminders

• T ≈ TO :  non-trivial critical behavior



Ising lattice gas (NON-equilibrium)

• Take two such systems, identical except for 
being coupled to two different thermal baths 

T  and T ′
• Put them side by side and change BC’s 
• … to allow particle exchange

across a common boundary - “defect line”

Model Specs



cold  T
below TO

Ising lattice gas (NON-equilibrium)

Model Specs

hot T ′
say, 



T < TO

Ising lattice gas (NON-equilibrium)

Model Specs

T ′ = 

• “defect line” (of combined system)
• allow p-h exchange across it
• using, say, T ′ in the rates

can impose full PBC 
(i.e., 2 defects lines)

or Free BC, 
or some others (later) 

PBC 
in y



Ising lattice gas (NON-equilibrium)

Model Specs

T ′ = 

update this side with 
Metropolis rates 

using various T’s

T ′ =  on this side  
means  free diffusion, 
just like J = 0!

Metropolis rates: min{1, e–ΔH(C)/kT }



Ising lattice gas (NON-equilibrium)

Model Specs

T ′ = 

update this side with 
Metropolis rates 

using various T’s

T ′ =  on this side  
means  free diffusion, 
just like J = 0!How does this differ from 

an Ising model with J = 0 on the right, 
in contact with a bath at a single T ?

Metropolis rates: min{1, e–ΔH(C)/kT }



Ising lattice gases
Non-equilibrium, two T’s Equilibrium, two J’s

Model Specs

J=0



Ising lattice gases 
Non-equilibrium, two T’s Equilibrium, two J’s

Model Specs



Ising lattice gas (NON-equilibrium)

Model Specs

• dynamics is local and
• homogeneous (apart from defect)

• T is localized…
to defect line, in the sense of dynamics

• density gradients induce net    
… particle currents
• …unlike in equilibrium !! 
……..where density gradients are balanced by 
……………...attractive interactions

• in steady state, currents form 
…loops and so, convection cells

T < TO T ′ = 



Ising lattice gas (NON-equilibrium)

Model Specs

• Other cold temperatures: T  ( e.g., > TO )

• Other fractions ( f ) of Lx at T ′ = 

• Other filling densities:  ρ  N/LxLy

• Other BC’s, e.g., Free and Pinned
PinBC (see later) for convenience in MC…

like in equilibrium Ising magnets, for measuring M.



Lx = Ly = 100

PinBC + PBC

f = ½

ρ= ½

A “run” : 
discard 1.6×106 MCS 
measure in 3×107 MCS 

average over 80 runs
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T ~  0.88 TO ; T ′ = 

Simulations



Simulations

Equilibrium, two J’s

Non-equilibrium, two T’s



Measuring currents  j(x)
• Keep track of every exchange on every 

bond, in each direction – 4LxLy of these! 

• The total over the run, Q, divided by MCS, 
is a current across that bond, in that direction. 

• NET current, j, across a bond is the difference.
• For systems in equilibrium,  j  = 0 

Net Q performs unbiased RW and P(Q) ~ exp[-cQ2/MCS]

• For NESS,  j  non-trivial, but must be 
divergence free!

Simulations



Currents and Curls
Drop … for simplicity!

•  j = 0  j =  something
• In 2-D, this has only z component …
• …known as the stream function: ψ
• Also,  j = something … also only z component

• …known as the vorticity: ω
• Clearly, 2ψ = –ω (~ potential-charge density in electrostatics)

Simulations



Currents and Curls
Drop … for simplicity!

•  j = 0  j =  something
• In 2-D, this has only z component …
• …known as the stream function: ψ
• Also,  j = something … also only z component

• …known as the vorticity: ω
• Clearly, 2ψ = –ω (~ potential-charge density in electrostatics)

Simulations

ψ allows you to “see” the currents

ω tells you their “essence”
much like the “sources” of a magnetic field



Currents and Curls
Drop … for simplicity!

•  j = 0  j =  something
• In 2-D, this has only z component …
• …known as the stream function: ψ
• Also,  j = something … also only z component

• …known as the vorticity: ω
• Clearly, 2ψ = –ω (~ potential-charge density in electrostatics)

Simulations
ω

x, y



Schematic of a 20x20

Stream function and 
vorticity in a 50x50

Simulations



Schematic of a 20x20

Stream function and 
vorticity in a 50x50

Simulations

ω for the two J Ising model 
in equilibrium



Currents and Curls
• j is “everywhere”; ω is localized!
• To probe the structure of ω, we studied a 

variety of  Lx , Ly 

• …e.g., 20400; 20200; 50200…
• … finding secondary, anti-vortices!



20400

secondary, 
anti-vortices!!

Simulations

5050

Note 
localization!



2040020200

Simulations



204005020020200

Simulations



Currents and Curls
• j is “everywhere”; ω is localized!
• To probe the structure of ω, we studied a 

variety of  Lx , Ly 

• …e.g., 20400; 20200; 50200…
• Most likely survives thermodynamic limit.
• Most likely, width in y scales with √ Lx .
• Most likely, width in x scales with ξ .

Simulations



Is PinBC like gravity?
• A possible criticism is the PinBC…
• … breaks translational invariance;
• … does it effectively induce vortices? 
• Restoring full PBC means, strictly, ω=0

for finite systems (like m(x) for ordinary lattice gas below TO).

• Can still detect ω, by using correlations 
e.g., n(x) ω(x′) (like ss for ordinary Ising magnets with PBC).

• “Long range order”: let |x─x′| ~ O(L).

Simulations



Lx = Ly = 100

full PBC

f = ½

ρ= ½

errors bars from 
average over 24 runs 

Simulations

n(25,25) ω(50,50)

T

T ′ = T
T ′ = 

T ′ = T is the ordinary Ising lattice gas!



Lx = Ly = 100

full PBC

f = ½

ρ= ½

errors bars from 
average over 24 runs 

Simulations

n(25,25) ω(50,50)

T

T ′ = T
T ′ = 

T ′ = T is the ordinary Ising lattice gas!



Irreversible Kolmogorov Loops
Another perspective of 

“non-equilibrium” physics 
– Violation of detailed balance & t reversal
– No need of a Hamiltonian
– Simulations  Master equation 

… notation & framework

Theoretical considerations



Notation and framework…
• Configurations:  Ci i

• Probability to find system: Pi (t) 

• Master eqn:

• Net probability current… from j to i :

K ji (t)  =  w ji Pj (t) - w ij Pi (t) 

j≠i
∂t Pi (t) = Σ [w ji Pj (t) - w ij Pi (t) ]

i

j



Notation and framework…
• After long times, Pi (t) settles to P*

i , i.e. 
the stationary distribution: ∂t P*

i = 0

• … with t-independent prob. currents:

• Rates respect detailed balance if

K* j
i =  w ji P*

j - w ij P*
i

w ij Peq
i =  w j

i Peq
j K* ≡ 0   det. bal.



Notation and framework…
• After long times, Pi (t) settles to P*

i , i.e. 
the stationary distribution: ∂t P*

i = 0

• … with t-independent prob. currents:

• Rates violating detailed balance lead to 
NESS with non-zero K*

…and non-trivial physical currents

K* j
i =  w ji P*

j - w ij P*
i



• Detailed Balance was presented as 

• …which give the impression that it “depends” on a known stationary distribution P* !

• But, DB is an “intrinsic” property of the 
dynamics (Kolmogorov criterion 1936!):
– consider closed loops in configuration space:

L  i → j → k …→ n → i
– and the product of associated rates around the loop 

of the rates:

w ji / w ij =  P*
i / P*

j

Theoretical considerations



Π[L ]  w ij w jk … w ni

– as well as the product of associated rates around 
the loop in reverse:

Π[L rev]  w in …w kj w ji
• Dynamics has detailed balance iff

Π[L ] = Π[L rev] for all loops

Irreversible Loops are key to NESS !

n i

j

n i

j

Theoretical considerations



Theoretical considerations

Π[L rev ] = q1q1 Π[L ] = 1111

q  exp [─ J/ kBT ]

Even the presence of a single irreversible loop is enough for 
d.b. violation and so, NESS



An “absolutely minimal”(exactly solvable)   system

• Two particles in a 22, PinBC + FBC
• Only 6 configurations; find P* exactly
• Compute K* and j, ω (just one loop!)

…as a function of T

Theoretical considerations
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An “absolutely minimal”(exactly solvable)   system

• Two particles in a 22, PinBC + FBC
• Only 6 configurations; find P* exactly
• Compute K* and j, ω (just one loop!)

…as a function of T

Theoretical considerations
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ω
q  exp [─ J/ kBT ]



• Two particles in a 22, PinBC + FBC
• Too small to show phase transition

… just a demonstration of ω ≠ 0
• n(x) ω(x′) and PBC possible, but 

need at least 24. 
• Up to 28 solvable numerically, 

showing similar results.

Theoretical considerations

An “absolutely minimal”(exactly solvable)   system



Mesoscopic approaches 
field theory, hydrodynamics, Langevin eqns., etc.

…some preliminary observations/thoughts…

• Conservation law   ∂t ρ = – j
• j has deterministic and noisy bits
• Both may have non zero curl…

…but neither affects the evolution of ρ!
• j[ρ]  ω[ρ] is a “slaved” field 

…unlike in hydrodynamics, where

v (and so, ω) is an independent field.

Theoretical considerations



Mesoscopic approaches 
field theory, hydrodynamics, Langevin eqns., etc.

…some preliminary observations/thoughts…

• From “model B” and its relatives, we 
learn to write j = –σμ, so that

j[ρ] = –σ[ρ](δF/δρ)    
ω[ρ] = –σ  (δF/δρ)

• Assuming homogeneous mobility, σ[ρ],
σ = – (δσ/δρ)ρ

Theoretical considerations



Mesoscopic approaches 
field theory, hydrodynamics, Langevin eqns., etc.

…some preliminary observations/thoughts…

• Ordinarily, we also have 
(δF/δρ) = (δ 2F/δρ 2)ρ 

ω[ρ]  0 !
• Here, we may guess at F[x,ρ] with 

explicit x coming from the defect line... 
• so that, perhaps,

|ρ (δF/δρ)  δ(x–xd )

Theoretical considerations

ω[ρ] = –σ  (δF/δρ) 
σ = – (δσ/δρ) ρ

 δ(x–xd )



Mesoscopic approaches 
field theory, hydrodynamics, Langevin eqns., etc.

…some preliminary observations/thoughts…

• … or perhaps this approach is deficient:
• F[x,ρ], j[ρ], ω[ρ] and ρ is insufficient to 

capture some essentials of NESS, e.g.,
• persistent currents and loops ( j and ω )
• HWDiehl: Perhaps the energy density  

(i.e., n.n. correlations) will play the crucial role?

Theoretical considerations



What else ? 
• Focus so far was non-zero j and ω … ……

……… in a particular setting (2-D, f =1/2, T < TO)
• Found discontinuous transitions…

…as f is changed,
• Critical properties remain to be explored:

anything “new” and relevant?   or 
all new (i.e., NESS) properties hiding as corrections?

• Surprises even above criticality:
inhomogeneous density profiles (see 1-D next)

Summary and Outlook



Summary and Outlook

Periodic Ising chain (1-D)

• “Boring” equilibrium properties!
sj = 0 ; nj = ρ = 1/2

• Kawasaki update, with…
fraction f coupled to T ′ = 

(preliminary data next)



Summary and Outlook

f = 20/100
spin Ising H used

Periodic Ising chain (1-D)

T = 0.5

T = 1.0



Summary and Outlook

f = 20/100 f = 20/1000

Periodic Ising chain (1-D)

run too short…
not yet in steady state



Summary and Outlook

f = 10/50 
T=1 (spin J used)

one run of 109 MCS

time series with 105

total M’s in window

compile histograms 
for both our model 
and two systems in 

equilibrium

Periodic Ising chain (1-D)

EQH – equilibrium, homogeneous 
EQ I – inhomogeneous; “two J model”



Conclusions 
• Non-equilibrium systems, even very simple ones 

and in stationary states, challenge our intuition.
• Much to be done on this system
• Many others to be explored
• … and expect the unexpected !!


