4th KIAS Conference on Statistical Physics 2010.07.26

Convection Cells without Shear or Gravity

Surprises from a Simple Model in Non-equilibrium Statistical Mechanics

R. K. P. Zia

Physics Department, Virginia Tech

Michel Pleimling Beate Schmittmann

Siddharth Venkat

Thanks to

Outline

- Motivations
 - Current loops in non-equilibrium steady states
 - Convection cells in real life
- Model specifications
- Simulation studies
 - How currents are measured and displayed: \boldsymbol{j} , $\boldsymbol{\psi}$, and $\boldsymbol{\omega}$
 - Non-trivial steady currents vs. fluctuations around zero
- Theoretical considerations
 - An "absolutely minimal" (exactly solvable) system
 - Mesoscopic approach (mean-field, continuum, hydrodynamics)
- What else? (Surprises even above T_c and in 1-D)

Equilibrium vs. Non-equilibrium SM

- Interacting many-particle systems *Statistical Mechanics*
- 3-step program for a system in thermal equilibrium:
 - Specify configurations of system: $\{C\}$
 - Specify internal energy for each configuration: H[C]
 - Exploit Boltzmann/Gibbs framework
 - Known P[C]; hard part is to compute averages of observables

Equilibrium vs. Non-equilibrium SM

- Interacting many-particle systems *Statistical Mechanics*
- How do systems (in steady state) far-from-equilibrium differ?
 - Systems *neither* totally isolated *nor* in contact with just **one** bath
 - "Open systems," coupled to many reservoirs
 - Specify rules for *evolution* for P[C,t]; may or may not have H[C]
 - Rules typically violate *t* reversal (no detailed balance) \Rightarrow
 - * *probability* currents can exist in *stationary* state: $K^*[C, C']$
 - * similar to magnetostatics

Non-Equilibrium Statistical Mechanics

- Many examples of systems far from equilibrium:
- Common features:
 - Interacting many-particle systems
 - Subject to external forces and/or open boundaries
 - Non-zero transport of mass, energy, etc.
 - Dynamics breaks detailed balance (microscopic time reversal)
 - Even steady states (from simple microscopics) are typically...

COMPER !!

Non-Equilibrium Statistical Mechanics

- Many examples of systems far from equilibrium:
- Common features... *COMPLEX!!*
- How to proceed ?
 - Biologist approach: one particular system at a time
 - Physicist/mathematician approach:

Study simple models and Look for essential, universal properties!

Non-Equilibrium Statistical Mechanics

- Many examples of systems far from equilibrium:
- Common features... *COMPLEX!!*
- How to proceed ? seek *essential features* in *simple* models
- Physical manifestations of K^* 's
 - energy flux *through* the system
 - particle currents (especially loops in steady states!)

Convection Cells

Convection cells in daily life

• Rayleigh-Benard

Rayleigh-Bernard convection in cooking oil

(photo by Ben Schultz April 2009)

 $http://www.aep.cornell.edu/eng10_student_course.cfm?function=detail&courseID=86$

http://www.catea.gatech.edu/grade/mecheng/mod8/mod8.html

http://www.airphotona.com/image.asp?imageid=712

Convection cells in daily life

• Kelvin-Helmholtz

http://en.wikipedia.org/wiki/File:Wavecloudsduval.jpg

"Kelvin-Helmholtz clouds"

Benjamin Foster; http://www.ucar.edu/news/events/moreclouds.shtm

http://en.wikipedia.org/wiki/File:Kelvin_Helmholz_wave_clouds.jpg

Convection cells in daily life

- Rayleigh-Benard
- Kelvin-Helmholtz

Both rely on the presence of "external" driving forces

Both rely on the presence of density fields as well as velocity fields

Are there *minimal* conditions for convection cells to exist?

- Temperature gradient (external – drive into non-equilibrium steady state)
- Density gradient

("internal" – from spontaneous sym. breaking)

no gravity, no shear, no (independent) velocity fields

M. Pleimling, B. Schmittmann, and R. K. P. Zia, EPL 89, 50001 (2010)

- *d* dimensional lattice (square in *d*=2)
- particle or hole at each site ($\mathbf{x} = (x,y)$)
- $C: \{n(\mathbf{x})\}; n = 1 \text{ or } 0; \Sigma n(\mathbf{x}) = N$
- $H(C) = -J \sum n(\mathbf{x}) n(\mathbf{x'})$ $\mathbf{x}, \mathbf{x'}$ n.n. pairs; **PBC**; J > 0.
- P(C) known : $exp\{-H(C)/k_BT\}$
- displays phase transitions if d > 1

- evolves by Kawasaki dynamics:
 - chose random n.n. pair
 - exchange with prob. $min\{1, e^{-\Delta H(C)/kT}\}$ (Metropolis rates)
 - preserves *N*, total particle number (magnetization)
 - system settles into thermal equilibrium...

In general, 6 bonds can change

- evolves by Kawasaki dynamics:
 - chose random n.n. pair
 - exchange with prob. $min\{1, e^{-\Delta H(C)/kT}\}$ (Metropolis rates)
 - preserves *N*, total particle number (magnetization)
 - system settles into thermal equilibrium...
- $d=2: \{L_x, L_y\};$ half-filled: $N = L_x L_y / 2$
- $T > T_{Onsager} \approx 0.5673 J/k_B$: homogeneous
- $T < T_O$: inhomogeneous...
 - co-existence of high- and low-density regions
 - separated by microscopically thin interfaces
 - regions are strips aligned with $min\{L_x, L_y\}$

• Take two such systems, identical except for being coupled to two different thermal baths

T and T'

- Put them side by side and change BC's
- ... to allow particle exchange

across a common boundary - "defect line"

 $\begin{array}{c} cold \ T \\ below \ T_O \end{array}$

Metropolis rates: $min\{1, e^{-\Delta H(C)/kT}\}$

upc

Ising lattice gas (NON-equilibrium)

<u>on this</u> side

ion,

How does this differ from an Ising model with J = 0 on the right, in contact with a bath at a *single T*?

Metropolis rates: $min\{1, e^{-\Delta H(C)/kT}\}$

Model Specs Ising lattice gases Non-equilibrium, two T's Equilibrium, two J's

Model Specs Ising lattice gases Non-equilibrium, two T's Equilibrium, two J's

 $T \leq T_{O}$ $T' = \infty$

- dynamics is *local* and
- *homogeneous* (apart from defect)
- **VT** is localized... to defect line, in the sense of *dynamics*
- density gradients induce net particle currents
- ...unlike in equilibrium !! where density gradients are balanced by attractive interactions
- in steady state, *currents* form loops and so, *convection cells*

- Other *cold* temperatures: T (e.g., > T_o)
- Other fractions (f) of L_x at $T' = \infty$
- Other filling densities: $\rho \equiv N/L_x L_y$
- Other BC's, e.g., Free and *Pinned* PinBC (see later) for convenience in MC...

 like in equilibrium Ising magnets, for measuring (M).

Simulations

 $T \sim 0.88 T_O$; $T' = \infty$

 $L_x = L_y = 100$ PinBC + PBC $f = \frac{1}{2}$ $\rho = \frac{1}{2}$

A "run" : discard 1.6×10⁶ MCS measure in 3×10⁷ MCS average over 80 runs

Simulations

Non-equilibrium, two *T*'s

Measuring currents $\mathbf{j}(\mathbf{x})$

- Keep track of every exchange on every bond, in each direction $4L_xL_y$ of these!
- The total over the run, *Q*, divided by MCS, is a current across that bond, in that direction.
- NET current, \mathbf{j} , across a bond is the *difference*.
- For systems in equilibrium, $\langle j \rangle = 0$ *Net Q* performs unbiased RW and $P(Q) \sim \exp[-cQ^2/MCS]$
- For NESS, (j) non-trivial, but must be divergence free!

Drop $\langle ... \rangle$ for simplicity!

- $\nabla \cdot \boldsymbol{j} = 0 \implies \boldsymbol{j} = \nabla \times \boldsymbol{something}$
- In 2-D, this has only *z* component ...
- ...known as the *stream function*: ψ
- Also, $\nabla \times j = something \dots$ also only *z* component
- ...known as the *vorticity*: ω
- Clearly, $\nabla^2 \psi = -\omega$ (~ potential-charge density in electrostatics)

• Clearly, $\nabla^2 \psi = -\omega$ (~ potential-charge density in electrostatics)

Vorticity and curl \vec{j} . By contrast, there is no such constraint on the vorticity $\omega \equiv \operatorname{curl} \vec{j}$ (a scalar in 2D). On the lattice, $\omega(x, y)$ can be associated with the plaquette centered at $(x + \frac{1}{2}, y + \frac{1}{2})$. A discrete version of $\oint \vec{j} \cdot d\vec{\ell}$ around the square,

$$\omega(x,y) \equiv j_x(x,y) + j_y(x+1,y) - j_x(x,y+1) - j_y(x,y)$$

- ...known as the *vorticity*: ω
- Clearly, $\nabla^2 \psi = -\omega$ (~ potential-charge density in electrostatics)

Simulations

Schematic of a 20x20

Simulations

Schematic of a 20x20 Stream function and vorticity in a 50x50

in equilibrium

- *j* is "everywhere"; ω is localized!
- To probe the structure of ω , we studied a variety of L_x , L_y
- ...*e.g.*, 20×400; 20×200; 50×200...
- ... finding secondary, anti-vortices!

- *j* is "everywhere"; ω is localized!
- To probe the structure of ω , we studied a variety of L_x , L_y
- ...*e.g.*, 20×400; 20×200; 50×200...
- Most likely survives thermodynamic limit.

Is PinBC like gravity?

- A possible criticism is the PinBC...
- ... breaks translational invariance;
- ... does it effectively induce vortices?
- Restoring full PBC means, strictly, (ω)=0 for finite systems (like (m(x)) for ordinary lattice gas below T_o).
- Can still detect ω, by using correlations
 e.g., (n(x) ω(x')) (like (ss) for ordinary Ising magnets with PBC).
- "Long range order": let $|\mathbf{x}-\mathbf{x}'| \sim O(L)$.

Simulations

T' = T is the ordinary Ising lattice gas!

 $\langle n(25,25) \omega(50,50) \rangle$ $L_x = L_y = 100$ full PBC $f = \frac{1}{2}$ $\rho = \frac{1}{2}$ ω n

Simulations

 $\langle n(25,25) \omega(50,50) \rangle$ $L_x = L_y = 100$ 0.002 full PBC $f = \frac{1}{2}$ 0.001 $\rho = \frac{1}{2}$ ● ۲ • 0.000 errors bars from average over 24 runs 0.35 0.3 0.25 0.45 0.5 0.4 T

Irreversible Kolmogorov Loops

Another perspective of "non-equilibrium" physics

- Violation of detailed balance & t reversal
- No need of a Hamiltonian
- Simulations \Leftrightarrow Master equation

Notation and framework...

- Configurations: *C_i i*
- Probability to find system: $P_i(t)$
- Master eqn: $\partial_t P_i(t) = \sum_{j \neq i} \left[w^{j} P_j(t) w^{i} P_i(t) \right]$
- *Net* probability current... from *j* to *i* :

Notation and framework...

- After long times, $P_i(t)$ settles to P_i^* , i.e. the stationary distribution: $\partial_t P_i^* = 0$
- ... with *t*-independent prob. currents:

$$K^{*j}_{i} = w^{j}_{i} P^{*}_{j} - w^{i}_{j} P^{*}_{i}$$

• Rates respect detailed balance if

$$w_{j}^{i} P^{eq}_{i} = w_{i}^{j} P^{eq}_{j}$$
 $K^{*} \equiv 0 \iff \text{det. bal.}$

Notation and framework...

- After long times, $P_i(t)$ settles to P_i^* , i.e. the stationary distribution: $\partial_t P_i^* = 0$
- ... with *t*-independent prob. currents:

$$K^{*j}_{i} = w^{j}_{i} P^{*}_{j} - w^{i}_{j} P^{*}_{i}$$

Rates violating detailed balance lead to
 NESS with non-zero K^{*}

• Detailed Balance was presented as $w_{i}^{j}/w_{j}^{i} = P_{i}^{*}/P_{j}^{*}$

• • which give the impression that it "depends" on a known stationary distribution P^st !

• But, DB is an "intrinsic" property of the dynamics (Kolmogorov criterion 1936!):

- consider closed loops in configuration space:

 $\mathscr{L} \equiv i \to j \to k \dots \to n \to i$

 and the product of associated rates around the loop of the rates:

n i

 as well as the product of associated rates around the loop *in reverse*:

• Dynamics has detailed balance *iff*

 $\Pi[\mathcal{L}] = \Pi[\mathcal{L}_{rev}] \quad for \, \underline{all \, loops}$

Irreversible Loops are key to NESS !

Even the presence of a single *irreversible loop* is enough for d.b. violation and so, NESS

An "absolutely minimal" (exactly solvable) system

• Two particles in a 2×2 , PinBC + FBC

An "absolutely minimal" (exactly solvable) system

- Two particles in a 2×2 , PinBC + FBC
- Only 6 configurations; find **P**^{*} exactly
- Compute K^* and j, ω (just one loop!)

 \dots as a function of *T*

$$\omega = 2\frac{1-q^2}{7+5q^2} \qquad q \equiv exp$$

 $\left[-J/k_{R}T\right]$

An "absolutely minimal" (exactly solvable) system

- Two particles in a 2×2 , PinBC + FBC
- Too small to show phase transition ... just a demonstration of $\omega \neq 0$
- (n(x) ω(x')) and PBC possible, but need at least 2×4.
- Up to 2×8 solvable numerically, showing similar results.

Mesoscopic approaches field theory, hydrodynamics, Langevin eqns., etc. ...some preliminary observations/thoughts...

- Conservation law $\Rightarrow \partial_t \rho = -\nabla \cdot \boldsymbol{j}$
- *j* has deterministic and noisy bits
- Both may have non zero *curl*...
 ...but neither affects the evolution of *ρ*!
- $\boldsymbol{j}[\rho] \Rightarrow \omega[\rho]$ is a "slaved" field

...<u>unlike</u> in hydrodynamics, where

 \boldsymbol{v} (and so, $\boldsymbol{\omega}$) is an independent field.

Mesoscopic approaches field theory, hydrodynamics, Langevin eqns., etc. ...some preliminary observations/thoughts...

• From "model B" and its relatives, we learn to write $\mathbf{j} = -\sigma \nabla \mu$, so that

$$\boldsymbol{j}[\rho] = -\sigma[\rho] \nabla(\delta \mathcal{F}/\delta \rho) \implies \omega[\rho] = -\nabla \sigma \times \nabla(\delta \mathcal{F}/\delta \rho)$$

• Assuming homogeneous mobility, $\sigma[\rho]$,

Ν

$$\nabla \sigma = -\left(\delta \sigma / \delta \rho\right) \nabla \rho$$

Mesoscopic a

 $\omega[\rho] = -\nabla\sigma \times \nabla(\delta \mathcal{F}/\delta\rho)$ $\nabla\sigma = -(\delta\sigma/\delta\rho) \nabla\rho$

- Ordinarily, we also have $\nabla(\delta \mathcal{F}/\delta \rho) = (\delta^2 \mathcal{F}/\delta \rho^2) \nabla \rho \implies \omega \propto \delta(x - x_d)$
- Here, we may guess at *[x,ρ*] with explicit x coming from the defect line...
- so that, perhaps,

$$\nabla|_{\rho} (\delta \mathcal{F} / \delta \rho) \propto \delta(x - x_{\rm d})$$

Mesoscopic approaches field theory, hydrodynamics, Langevin eqns., etc. ...some preliminary observations/thoughts...

- ... or perhaps this approach is deficient:
- $\Im[\mathbf{x},\rho], \widehat{\boldsymbol{\rho}}[\rho], \varpi[\rho]$ and ρ is insufficient to capture some essentials of NESS, e.g.,
- persistent currents and loops (\boldsymbol{j} and $\boldsymbol{\omega}$)
- HWDiehl: Perhaps the energy density (i.e., *n.n. correlations*) will play the crucial role?

What else ?

- Focus so far was non-zero *j* and ω ... in a particular setting (2-D, f=1/2, T < T_o)
- Found discontinuous transitions...

 \dots as f is changed,

- Critical properties remain to be explored: anything "new" and relevant? or all new (i.e., NESS) properties hiding as corrections?
- Surprises even above criticality:

- "Boring" equilibrium properties! $\langle s_j \rangle = 0$; $\langle n_j \rangle = \rho = 1/2$
- Kawasaki update, with... fraction f coupled to $T' = \infty$ (preliminary data next)

f = 10/50T=1 (spin J used)

one run of 109 MCS

time series with 10^5 total *M*'s in window

compile histograms for both our model and two systems in equilibrium

EQH – equilibrium, homogeneous EQ I – inhomogeneous; "two J model"

Conclusions

- Non-equilibrium systems, even very simple ones and in stationary states, challenge our intuition.
- Much to be done on this system
- Many others to be explored
- ... and expect the *unexpected* !!

