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Main objective

some similarities between two classes of systems

driven, non-equilibrium, systems with local dynamics

Systems with long-range interactions in thermal equilibrium



Driven systems

T1 T2

T1>T2

E

heat current

charge current

Local and stochastic dynamics

No detailed balance (non-vanishing current)

What is the nature of the steady state?



drive in conserving systems result in many cases in long-range

correlations leading, in some cases, to spontaneous symmetry

breaking and  condensation transition even in one dimension.

What can be learned from long-range interacting systems

at equilibrium on steady state properties of driven systems?



Systems with long-range interactions at equilibrium

in d  dimensions

two-body interaction
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and the energy is not extensive

for σ<0 



self gravitating systems    (1/r)                    σ=-2

ferromagnets σ=0

2d vortices                       log(r)                   σ=-2

mean-field                        1 / V                      σ=-d            
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TSEF −=Free Energy:

VSVE d ∝∝ −    ,  /1 σ
since

ES << the entropy may be neglected in the

thermodynamic limit.

energy-entropy balance 

In finite systems, although E>>S, if T is high enough

E may be comparable to TS, and the full free energy

need to be considered, (Self gravitating systems, e.g.

globular clusters).

Alternatively, one may rescale the Hamiltonian

VEHVH d ∝⇒→        /σ



Globular clusters are gravitationally bound concentrations

of approximately ten thousand to one million stars, spread

over a volume of several tens to about 200 light years in 

diameter. 
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E may be comparable to TS  
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For a typical cluster (M2)

N=150,000 stars

R= 175 light years 
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The energy is non-additive:
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Take for example the Ising model:

These systems are non-additive (even after rescaling)

BA FFF +≠A B



As a result, many of the common properties of typical

systems with short range  interactions are not shared

by these systems.



Features which result from non-additivity

Negative specific heat in microcanonical ensemble 

Inequivalence of microcanonical (MCE) and

canonical (CE) ensembles

Breaking of ergodicity in microcanonical ensemble

Slow dynamics, diverging relaxation time

Thermodynamics

Dynamics

Temperature discontinuity in MCE 



Some general considerations

Negative specific heat in microcanonical ensemble

of non-additive systems.
Antonov (1962); Lynden-Bell & Wood (1968); Thirring (1970), Thirring & Posch 

coexistence region

in systems with short range interactions

E0 = xE1 +(1-x)E2

S0 = xS1 +(1-x)S2

hence S is concave and the microcanonical

specific heat is non-negative
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2nd order

1st order

tricritical

T

∆

T

∆canonical

T

∆microcanonical

Typical (but not exclusive) resulting phase diagrams



continuous microcanonical transition

negative microcanonical specific heat

multivalued E(T) curve

first order canonical transition

similarly for ρ(µ) curve in canonical vs grand canonical
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Temperature discontinuity at a first order microcanonical transition

T
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Long range correlations in driven systems

Conserved variables tend to produce long-range correlations

in driven systems, sometimes resulting in LRO even in d=1.

Can these correlations be viewed as resulting from effective

long-range interactions, even when the dynamics is local?

Features like ensemble inequivalence etc.

Driven systems



The ABC model 

One dimensional driven model with stochastic local dynamics

which results in phase separation (long range order) where the

steady state can be expressed as a Boltzmann distribution of an

effective energy with long-range interactions. 



A B C

ABC Model

AB               BA
1

q

BC               CB
1

q

CA               AC
1

q

dynamics

Evans,Kafri, Koduvely, Mukamel PRL 80, 425 (1998)

A  model with similar features was discussed by Lahiri, Ramaswamy PRL 79, 1150 (1997) 



Simple argument:

AB               BA
1

q

BC               CB
1

q

CA               AC
1

q

ACCCC CCCCA

CBBBB BBBBC

BAAAA AAAAB

…AACBBBCCAAACBBBCCC…

…AABBBCCCAAABBBCCCC…

…AAAAABBBBBCCCCCCAA…

fast rearrangement

slow coarsening

The model reaches a phase separated steady state



logarithmically slow coarsening

…AAAAABBBBBCCCCCCAA…

tlqt l ln      ∝∝ −

needs n>2 species to have phase separation

strong phase separation: no fluctuation in the bulk;

only at the boundaries.

…AAAAAAAAAABBBBBBBBBBBBCCCCCCCCCCC…

Phase separation takes place for any q (except q=1)

Phase separation takes place for any density N   , N    , N   
A B C



N N N
A B C
= =Special case

The argument presented before is general, independent of densities.

For the equal densities case the model has detailed balance for arbitrary q.

For any microscopic configuration {X} one can define an energy E({X}) 

such that the steady state distribution is
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AAAAAABBBBBBCCCCC E=0

……AB…..                      ……BA…..     E         E+1

……BC…..                      ……CB…..     E         E+1

……CA…..                      ……AC…..     E         E+1
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With this weight one has:
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AAAAABBBBBCCCCC             AAAABBBBBCCCCCA

E                                   E+NB-NC

NB = NC

Thus such energy can be defined only for NA=NB=NC

This definition of energy is possible only for N N N
A B C
= =



Partition sum

∑= nqnpqZ )()(1

Excitations near a single interface:     AAAAAAABBBBBB

P(n)= degeneracy of the excitation with energy n

P(0)=1

P(1)=1

P(2)=2 (2, 1+1)

P(3)=3 (3, 2+1, 1+1+1)

P(4)=5 (4, 3+1, 2+2, 2+1+1, 1+1+1+1)

P(n)= no. of partitions of an integer n
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Partition sum:
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The energy E({X}) may be written as
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Alternatively, in a manifestly translational invariant form:

(mean-field like interaction with σ=-d)
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Local dynamics

Long range interaction

Long range order at any q≠1



Weakly asymmetric ABC model

Neq /β−=

Clincy, Derrida, Evans, PRE 67, 066115 (2003)

q=1  - homogeneous            q<1  - phase separation

consider

the model exhibits a phase transition at

for the case of equal densities  
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phase separated

This feature persists at non-equal densities.



{ }( ) ( ) 9/
1 1

1 1

NABCABC
N

xE
N

i

iN

k

kiikiikii −++= ∑∑
−

=

−

=
+++

effective rescaled “energy”

Neq /β−=The choice                   amounts to rescaling the energy

by 1/N

without rescaling: 

energy is dominates the entropy, no transition

with rescaling: 

energy and entropy are comparable, resulting in a transition
Neq /β−=

β−= eq



A brief summary of the ABC model

Driven model with local dynamics

Exhibits long range correlation (phase separation)

It exhibits a phase transition in the weak bias limit

In the case of equal densities its steady state may be

expressed by an energy with long range interactions



Outline

Generalize the model to study non-conserving processes

Compare steady states of conserving and non-conserving dynamics

The existence of effective long range interactions may lead

to different steady states in both cases for  equal densities

Use this as a starting point to move into non-equal

densities (where there is no detailed balance)



Generalized ABC model

A , B,  C,  0;

AB               BA
1

q

BC               CB
1

q

CA               AC
1

q

0X               0X
1

1

X=A,B,C

Dynamics

A. Lederhendler, D. Mukamel, arXive:1006.2715;

Add vacancies:

Vacancies are “inert”

LNNNNN CBA ≤=++    ,   

A. Lederhendler, O. Cohen, D. Mukamel ;
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For  NA=NB=NC there is detailed balance

not important



Non conserving processes

AB               BA
1

q

BC               CB
1

q

CA               AC
1

q

0X               0X
1

1

ABC               000
p

pqθ

µθ L3=

X=A,B,C

…A000ACBABCCA00AACBBB00000CCC…

ABC000
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The dynamics is local

For NA=NB=NC: there is detailed balance with respect to
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irrespective of  {X} and of where the deposition is made
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Conserving dynamics corresponds to the canonical ensemble:

minimize                   and then determine µ by taking the derivative.   )),(( TxF ρ

The model exhibits a transition from 

homogeneous to modulated structure at  
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Conserving dynamics
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A. Ayyer, E. A. Carlen, J. L. Lebowitz, P. K. Mohanty, D. Mukamel, and E. R. Speer 

J. Stat. Phys. , 137(5-6):1166–1204, 2009.

Density profiles 
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Non-conserving dynamics

AB               BA
1

q

BC               CB
1

q

CA               AC
1

q

0X               0X
1

1

ABC               000
1

qθ

µθ L3=

X=A,B,C

Grand canonical ensemble: minimize G with respect to ρ(x) at a given µ
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Grand canonical ensemble: minimize G with respect to ρ(x) at a given µ

One finds the same critical line

as in the canonical ensemble

But at

this transition becomes first order 
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Surprisingly, 0),(6 =µβg . Hence this is a fourth order critical point.



Non-conserving dynamics

-1/18 µ

0000000 A..AB..BC..C
T=0



Non-conserving dynamics



-1/18 µ

0000000 A..AB..BC..C
T=0

Canonical  vs. grand-canonical phase diagrams



Conserving vs. non-conserving dynamics: 2nd order line

T=0.04



T=0.02

Conserving vs. non-conserving dynamics: 1st order line



• The profile can still be calculated as a function of J’s (J≠0)

• Critical lines obtain by expansion near homogeneous phase 

out of Equilibrium – unequal densities
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Out of equilibrium
CBA    NNN ≠=





Summary

Local stochastic dynamics may result in effective long-

range interactions in driven systems.

This is manifested in the existence of phase transitions

in one dimensional driven models.

Existence of effective long range interactions can be explicitly

demonstrated in the ABC model.

The model exhibits phase separation for any drive 

Phase separation is a result of effective long-range

interactions generated by the local dynamics.

Inequivalence of ensembles in the driven model.

1≠q


