Non-equilibrium statistical mechanics of Noisy Computing

Alexander Mozeika ${ }^{1}$, David Saad ${ }^{1}$ and Jack Raymond ${ }^{2}$
${ }^{1}$ Aston University, UK
${ }^{2}$ Hong Kong University of Science and Technology, China
July 24, 2010

Outline

- Background: Noise in Computing, von Neumann's model.
- Motivation
- Random Boolean functions: Savicky's growth process.
- Model: Layered variant of growth process.
- Method: Generating functional.
- Results: Phase transitions, functions computed, evolution of error.
- Ongoing work: Probability of a Boolean function.
- Summary

Noise in computing

- Noise is inherent in most forms of computing.
- Classical computing circuits suffer from thermal noise and production errors.
- Impact of noise is more dramatic with increasing circuit complexity and scale.
- Quantum computers suffer from decoherence.
- Neural networks and biological systems are inherently noisy.

von Neumann's model of noisy computation

- von Neumann, 1952: For each gate in circuit assign $0<\epsilon<1 / 2$ which is probab. for the gate to operate incorrectly. Can circuit perform desired operation with error (in the output) $\delta<1 / 2$ (reliable)?
- ϵ-noisy gate $-\alpha:\{-1,1\}^{k} \rightarrow\{-1,1\}$, but for each $\mathbf{S} \in\{-1,1\}^{k}: \alpha(\mathbf{S}) \rightarrow-\alpha(\mathbf{S})$ with prob. ϵ.
- Circuit/Formula - directed acyclic graph/rooted tree.
- Pippenger, 1988: k-ary formulas which tolerate noise: (i) must be deeper (slower) and (ii) compute any Boolean functions with $\delta<1 / 2$ only when $\epsilon<(k-1) / 2 k$.
- Evans et. al., 1998: NAND-gate formulas: $\epsilon<(3-\sqrt{7}) / 4$.
- Evans et. al., 2003: k-ary formulas: $\epsilon<\frac{1}{2}-\frac{2^{k-2}}{k((k-1) / 2)}$.

Motivation

- Rigourous results correspond to worst cases.
- Our aim is to analyze the typical behavior of noisy Boolean random circuits/formulas:
- noise thresholds for different gates/distributions over gates
- level of error expected at any depth/layer
- functions computed
- sensitivity of functions
- convergence-rate dependence on input and noise

Random Boolean functions

- Savicky's growth process:

$$
\begin{aligned}
& A_{0}=\left\{1,-1, S_{1}, \ldots, S_{n},-S_{1}, \ldots,-S_{n}\right\} \\
& A_{\ell+1}=\left\{\alpha\left(\phi_{1}, \ldots, \phi_{k}\right) ; \phi_{j} \in A_{\ell} \text { for } j=1,2, \ldots, k\right\}
\end{aligned}
$$

- Savicky, 1990: For all balanced and nonlinear α (MAJ-k,etc.) and for all f : $\lim _{\ell \rightarrow \infty} P_{\ell}(f)=\left(\frac{1}{2}\right)^{2^{n}}$.
- Brodsky et. al., 2005: Depending on A_{0} and α process converges to uniform distribution on some set of functions or to single Boolean function.

Model

- We use layered variant of Savicky's growth process (feed-forward $N \times(L+1)$ circuit).
- $S^{\prime}=\left\{-1,1, S_{1}, \ldots, S_{n},-S_{1}, \ldots,-S_{n}\right\},\left|S^{\prime}\right| \in O\left(N^{0}\right)$.

Probabilistic framework

- The i-th gate in the ℓ-th layer operates according to:

$$
S_{i}^{\ell}=\eta_{i}^{\ell} \alpha_{i}^{\ell}\left(S_{i_{1}}^{\ell-1}, \ldots, S_{i_{k}}^{\ell-1}\right)
$$

where $P\left(\eta_{i}^{\ell}=-1\right)=\epsilon$, which leads to the microscopic law

$$
P\left(S_{i}^{\ell} \mid S_{i_{1}}^{\ell-1}, \ldots, S_{i_{k}}^{\ell-1}\right)=\frac{\mathrm{e}^{\beta S_{i}^{\ell} \alpha_{i}^{\ell}\left(S_{i_{1}}^{\ell-1}, \ldots, S_{i_{k}}^{\ell-1}\right)}}{2 \cosh \left[\beta \alpha_{i}^{\ell}\left(S_{i_{1}}^{\ell-1}, \ldots, S_{i_{k}}^{\ell-1}\right)\right]},
$$

where $\tanh \beta=1-2 \epsilon$.

- Joint probability of microscopic states in two systems:

$$
P\left[\left\{\mathbf{S}^{\ell}\right\} ;\left\{\hat{\mathbf{S}}^{\ell}\right\}\right]=P\left(\mathbf{S}^{0}, \hat{\mathbf{S}}^{0} \mid S^{\prime}\right) \prod_{\ell=1}^{L} P\left(\mathbf{S}^{\ell} \mid \mathbf{S}^{\ell-1}\right) P\left(\hat{\mathbf{S}}^{\ell} \mid \hat{\mathbf{S}}^{\ell-1}\right)
$$

where $P\left(\mathbf{S}^{\ell} \mid \mathbf{S}^{\ell-1}\right)=\prod_{i=1}^{N} P\left(S_{i}^{\ell} \mid S_{i_{1}}^{\ell-1}, \ldots, S_{i_{k}}^{\ell-1}\right)$.

Generating functional analysis I

- Generating function:

$$
Z[\boldsymbol{\psi} ; \hat{\boldsymbol{\psi}}]=\left\langle\mathrm{e}^{-\mathrm{i} \sum_{\ell, i}\left\{\psi_{i}^{\ell} S_{i}^{\ell}+\hat{\psi}_{i}^{\ell} \hat{S}_{i}^{\ell}\right\}}\right\rangle,
$$

where $\langle\ldots\rangle$ denotes average w.r.t. $P\left[\left\{\mathbf{S}^{\ell}\right\} ;\left\{\hat{\mathbf{S}}^{\ell}\right\}\right]$.

- Moments: $\left\langle S_{i}^{\ell} \hat{S}_{j}^{\ell^{\prime}}\right\rangle=-\lim _{\boldsymbol{\psi}, \hat{\boldsymbol{\psi}}_{\rightarrow 0}} \frac{\partial^{2}}{\partial_{\psi_{i}^{\ell}} \hat{\psi}_{j}^{\ell^{\prime \prime}}} Z[\boldsymbol{\psi} ; \hat{\boldsymbol{\psi}}]$.
- For $N \rightarrow \infty$ the system is self-averaging: $\overline{Z[\ldots]}=\int\{\mathrm{d} \mathbf{P} \mathrm{d} \hat{\mathbf{P}}\} \mathrm{e}^{N \Psi[\mathbf{P}, \hat{\mathbf{P}}]}$, where \cdots average over disorder.
- Order parameter: $P^{\ell}(S, \hat{S})=\frac{1}{N} \sum_{i=1}^{N} \overline{\left.\left\langle\delta_{S_{i}^{\ell} ; S^{\prime}} \delta_{\hat{S}_{i}^{\ell} ; \hat{S}^{\prime}}\right\rangle\right|_{S^{\prime}}}$.
- Observables: $m(\ell)=\frac{1}{N} \sum_{i=1}^{N} \overline{\left\langle S_{i}^{\ell}\right\rangle}, \hat{m}(\ell)$ and $C(\ell)=\frac{1}{N} \sum_{i=1}^{N} \overline{\left\langle S_{i}^{\ell} \hat{S}_{i}^{\ell}\right\rangle}$.

Generating functional analysis II

- Evolution from layer to layer:

$$
\begin{aligned}
m(\ell+1)=(1-2 \epsilon) \sum_{\left\{S_{j}\right\}} \prod_{j=1}^{k} & {\left[\frac{1+S_{j} m(\ell)}{2}\right]\left\langle\alpha\left(S_{1}, . ., S_{k}\right)\right\rangle_{\alpha} } \\
C(\ell+1)=(1-2 \epsilon) \sum_{\left\{S_{j}, \hat{S}_{j}\right\}} \prod_{j=1}^{k} & {\left[\frac{1+S_{j} m(\ell)+\hat{S}_{j} \hat{m}(\ell)+S_{j} \hat{S}_{j} C(\ell)}{4}\right] } \\
& \times\left\langle\alpha\left(S_{1}, . ., S_{k}\right) \alpha\left(\hat{S}_{1}, . ., \hat{S}_{k}\right)\right\rangle_{\alpha}
\end{aligned}
$$

where $m(0)=\hat{m}(0)=\frac{1}{\left|S^{\top}\right|} \sum_{S \in S^{\prime}} S, C(0)=1$.

- Sensitivity: $\Delta(\ell)=\lim _{\epsilon \rightarrow 0} \frac{1}{2}\left[1-\frac{1}{N} \sum_{i=1}^{N} \overline{\left\langle S_{i}^{\ell} \hat{S}_{i}^{\ell}\right\rangle}\right]$.
- Error: $\delta(\ell)=\max _{S^{\prime}} \frac{1}{2}\left[1-\frac{1}{N} \sum_{i=1}^{N} \overline{\left.\left\langle S_{i}^{\ell} \hat{S}_{i}^{\ell}\right\rangle\right|_{S^{\prime}}}\right]$.

Phase transitions

- MAJ- k gate: $\epsilon^{*}=1 / 2-2^{k-2} / k\binom{k-1}{(k-1) / 2}$.
- NAND gate: $\epsilon^{*}=(3-\sqrt{7}) / 4$.
- $\epsilon^{*}>\epsilon$ information about S^{\prime} (input) preserved for arbitrarily many layers.
- Complicated computational task $=$ significant number of layers \Rightarrow only relatively simple operations when $\epsilon>\epsilon^{*}$.

Boolean functions computed

When $\epsilon=0$ typical formula on layer $\ell \rightarrow \infty$ computes:

- in MAJ-k circuit

$$
F=\left\{\begin{array}{lll}
+1 & & \text { if } m(0)>0 \\
\pm 1 & \text { with prob. }{ }^{1} / 2 & \text { if } m(0)=0 \\
-1 & & \text { if } m(0)<0
\end{array}\right\}
$$

where $m(0)=\frac{1}{\left|S^{\top}\right|} \sum_{S \in S^{\prime}}$.

- in NAND circuit

$$
F= \begin{cases}-1 & \text { if } m(0)<2-\sqrt{5} \\ +1 & \text { if } m(0)>2-\sqrt{5}\end{cases}
$$

Sensitivity

Figure: Left: Hamming distance for $k=3$ (solid line), with input mismatch $\Delta(0)=10^{-3}, 10^{-4}, 10^{-6}$ (left to right), and for $k=5(+)$, $k=7(\times)$ with $\Delta(0)=10^{-6}$. Right: Reliability boundaries.

- For $\epsilon=0$ and $m(0)=0$ the MAJ- k circuit is sensitive.
- For $\epsilon>0$ circuit amplifies noise and $\delta(L)$ grows but remains limited for small ϵ.

Convergence rates and evolution of error

Figure: Left: Number of layers in the noiseless MAJ- k based circuit computing MAJ-n function. Theoretic data-points are represented by symbols $+(k=3), \times(k=5)$ and $*(k=7)$. The straight line corresponds to the bound $k 2^{k} \log (n)$, plotted here for $k=3$ only. Right: Evolution of error in MAJ-5 circuit.

- For $\epsilon=\epsilon^{*}(k) \pm \Delta \epsilon$ and k large: $|m(\ell)-m(\infty)| \approx \mathrm{e}^{-\operatorname{const} \sqrt{k} \Delta \epsilon \ell}$.
- The error can not be reduced when $\epsilon>\epsilon(0)$.

Ongoing work

- Consider 2^{n} copies of noisy system with the same random layered toplolgy but for different inputs.
- Probability of a Boolean function on layer $\ell+1$
$P^{\ell+1}(\mathbf{S})=\sum_{\left\{\mathbf{S}_{j}\right\}} \prod_{j=1}^{k}\left[P^{\ell}\left(\mathbf{S}_{j}\right)\right]\left\langle\prod_{\sigma_{1}, . ., \sigma_{n}} \frac{\mathrm{e}^{\beta S(\sigma) \alpha\left(S_{1}(\sigma), . ., S_{k}(\sigma)\right)}}{2 \cosh \beta \alpha\left(S_{1}(\sigma), . ., S_{k}(\sigma)\right)}\right\rangle_{\alpha}$
where $\mathbf{S} \in\{-1,1\}^{2^{n}}$ and $\sigma=\left(\sigma_{1}, . ., \sigma_{n}\right) \in\{-1,1\}^{n}$.
- For $\beta \rightarrow \infty$ and single gate α we recover equation used to study Savicky's growth process.
- Furthermore, the same equation is valid for random recurrent topology.

Evolution of Entropy

Figure: Evolution of entropy for $\beta \rightarrow \infty$ in MAJ-3 circuit. Left: $S^{\prime}=\left\{1, S_{1}, S_{2}\right\}$. Right: $S^{\prime}=\left\{-1,1, S_{1}, S_{2},-S_{1},-S_{2}\right\}$

- Shannon entropy: $H^{\ell}=-\sum_{\mathbf{s}} P^{\ell}(\mathbf{S}) \log P^{\ell}(\mathbf{S})$

Summary

- The models of random formulae can be mapped onto a physical framework which allows one to analyze the typical behavior of noisy Boolean random formulae (balanced).
- The typical-case macroscopic behavior observed corresponds straightforwardly to the bounds obtained in the theoretical computer science.
- The framework enables one to explore further properties: the level of error and function-bias expected at any depth, the sensitivity to input perturbations, the convergence rate depending on the input bias.
- We also studied the effects of hard and threshold noises.
- Phys. Rev. Lett. 2009; arXiv:0908.3981v1.

