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% Experimental characterization of noise in gene
expression

% A two-compartment model of transport with bursty input:
the chemical master equation approach

% General formulation of noise propagation in bio-networks
based on time-series analysis

% Some open issues: jamming and nonlinear transport




What do cells do?

Basically, cell is a stand-alone machine that manages its
own assembly, maintenance, environmental protection,

All done in a hurry based
on noisy molecular circuits

and reproduction.

Ribosomal .
N, subunits | ' Assino ocids
N

3 > JL : Translation
\.\ tactors
.

— mRNA ranslation

H. Lodish et al., Molecular Cell Biology, 5" Ed.

Noise Biology

A brand new discipline that can benefit and benefit

s e ) ML Simpson et al (2009) Noise
from nonequilibrium statistical physics

in Biological Circuits, Nanomed
Nanobiotechnol 1: 214-225.
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Noise Biology: it s all about numbers and timing

Gene expression

’ Extrinsic noise sources
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> Keep protein copy numbers low to: stochastic dynamics molecular apparatus

— Save space

— Save the cost to synthesize proteins

» Noise/fluctuation an inconvenient truth
that impacts every aspect of life

Measurement of noise in gene expression using two-color GFP

M B Elowitz, A J Levine, E D Siggia, P S Swain Two copies of the same gene under identical

(2002) Stochastic gene expression in a single promoters and genomic environment in E. coli
cell, Science 297, 1183.

Temporal variation of protein copy number
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Bursty protein synthesis in bacteria

E M Ozbudak, M Thattai, | Kurtser, A D Grossman,
A van Oudenaarden (2002) Regulation of noise in

the expression of a single gene, Nature Genetics

31, 69.

Protein copy number distribution Strains with varying translational
in isogenic bacterial cells efficiency (30% difference)
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Translational bursting: a few tens of

bursty

proteins are made from each mRNA.

Transcriptional Bursting in Mammalian Cell Gene Expression

A Raj et al (2006)
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A two-compartment model for mRNA life cycle

Li-ping Xiong, Yu-giang Ma, Lei-Han Tang (2010) Attenuation of
transcriptional bursting in mRNA transport, Phys Biol 7: 016005
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Chemical master equations for linear transport

m,,: nuclear mMRNA copy number Raising/lowering operators: ¢, f(m )= f(m, +1)
m,: cytoplasmic mRNA copy number a=nc  gf(m,)="f(m, -1)
i ive: 1P (my, me. t
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Michaelis-Menten transport

Transport reaction: M, + E = LNy M, = FE + M,
Rz

Queuing due to finite number of transport channels/enzymes

Fast equilibration: EM, population equilibrates much faster than the time for M, to
undergo significant change
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Moment equations not closed due to a nonlinear v(m,,)

Michaelis-Menten transport (cont’d)
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Comparison with simulation results
using the Gillespie algorithm

e =10,(m,)=20,(m,) =40

Noise strength relative to that of the linear model
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Summary on the chemical master equation approach

Exact representation of the Markovian dynamics

» Computation rather tedious even for a small number of molecular species

and reactions

develop suitable expansions

Not suitable/inconvenient for

Approximations needed when queuing is introduced. Not clear how to

% Processes that are not markovian (e.g., those with nonexponential waiting times)

+ Large networks

% Coarse-grained models




= ALTERNATIVE FORMULATION by tracing the
fate of individual molecules

i) Independent walkers (linear theory):

probability distribution based on waiting times

i) Interacting walkers (nonlinear theory)

gueuing, slow and fast variables, adiabatic approximation

Transport along a linear pathway

a & o5& & E Levine and T Hwa (2007) Stochastic
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Statistics of arrival time series: autocorrelation function

[ Wag

Discretize time axis: events specified by M, =0,1

Auto-correlation function:

Stationary process
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['(t) describes clustering/anti-clustering of arrival events!
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Extreme form of clustering!

Statistics of departure time series
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Non-interacting walkers: waiting times statistically independent

Laplace transforms of the
non-Poisson component of
autocorrelation functions

A(s) = p(s)p(=s)T(s)
Yl X

departure arrival

In particular, Poissonian input leads to Poissonian output!




Copy number fluctuations at the node
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Interacting particles: queuing

Idea: individual reaction events proceed
much faster than appreciable change in
the population size of molecular species

Adiabatic approximation: rate of reaction ~ f( V)

Linear expansion: f(N) = kg(N + R)

here  kar = F((N)) R = L0 _ ()

—Back to the non-interacting case

Details are being worked out

Michaelis-Menten transport along a linear pathway

E Levine and T Hwa (2007) Stochastic fluctuations
in metabolic pathways, PNAS 104:9224-29
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Conclusions and outlook

Statistical physics:

» Non-interacting walkers: noise propagation on a network can be studied
exactly using propagation of auto-correlation function of arrival/birth time
series. Strong noise associated with clustering of birth events. The formalism
can be easily adapted to coarse-grained treatments (no Markovian
assumption required), and provide a useful framework for data integration and
extraction of kinetic parameters

» Interacting walkers: separate fast and slow variables, adiabatic approximation.
Need to consolidate with exact results from zero-point processes

Biology

> ldentify noise source and noise attenuation along the network
» Attenuation of noise through feedbacks etc.
» Exploiting noise to generate diversity in colonal populations

» Deeper issues w.r.t. economy vs reliable execution of biological function

Collaborate with biologists or play yourself!

Thank you for your attention!
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