Evolutionary advantage of small populations on complex fitness landscapes

Su-Chan Park

NSPCS 2010, July 27, 2010

Joint work with J. Krug and K. Jain (arXiv:1003.5380)

Outline

- Evolution in the lab
- Evolution on simple and complex media

2 Advantage of small populations

- Three-locus model
- How generic is the three-locus model?

3 Summary

< 🗇 🕨

Evolution in the lab Evolution on simple and complex media

Outline

- Evolution in the lab
- Evolution on simple and complex media

2 Advantage of small populations

- Three-locus model
- How generic is the three-locus model?

3 Summary

Evolution in the lab Evolution on simple and complex media

Evolution in action in the lab S. F. Elena and R. E. Lenski, Nat. Rev. Genetics **4**, 457 (2003).

R. Lenski, Michigan State University

イロト イポト イヨト イヨト

50,000 generations in Feb. 2010 (6 generations a day)

Evolution in the lab Evolution on simple and complex media

Measuring Fitness S. F. Elena and R. E. Lenski, Nat. Rev. Genetics **4**, 457 (2003).

ヘロン ヘアン ヘビン ヘビン

э

Evolution in the lab Evolution on simple and complex media

Measuring Fitness S. F. Elena and R. E. Lenski, Nat. Rev. Genetics **4**, 457 (2003).

$$\frac{w_2}{w_1} \stackrel{?}{=} \frac{w_2}{w_0} \bigg/ \frac{w_1}{w_0}$$

ヘロン ヘアン ヘビン ヘビン

э

Su-Chan Park Advantage of small populations

Evolution in the lab Evolution on simple and complex media

Measuring Fitness S. F. Elena and R. E. Lenski, Nat. Rev. Genetics **4**, 457 (2003).

$$\frac{w_2}{w_1} \stackrel{?}{=} \frac{w_2}{w_0} \bigg/ \frac{w_1}{w_0}$$

cf: Kerr et al. (2002) rock-paper-scissors game

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Evolution in the lab Evolution on simple and complex media

Fitness and fitness landscape

- fitness $w(\sigma)$: average number of offspring
- genotype $\sigma = (\sigma_1, \sigma_2, \dots, \sigma_L)$ ($\sigma_i = 1$ or 0)
- fitness is a function of genotypes (and environment).
- selection coefficient $s = \frac{w}{w'} 1$.
- fitness landscape $w(\sigma)$:

adaptation (natural selection): hill-climbing process

Evolution in the lab Evolution on simple and complex media

speed of adaptation (theory)

non-epistatic fitness landscape (Levine's talk)

$$w(\sigma) = \prod_{i=1}^{L} \exp(s_i \sigma_i) \Rightarrow \frac{d \ln \bar{w}(t)}{dt} \sim \ln(NU)$$

Review : SCP, D. Simon and J. Krug, JSP **138**, 381 (2010) • house-of-cards model with infinite number of sites

 $w(\sigma) =$ random number drawn from p(w)

if $p(w) = \exp(-w)$ and $\rightarrow \overline{w}(t) \sim \ln(NUt)$

SCP and J. Krug, J. Stat. Mech. P04014 (2008).

• a large population adapts faster than a small one.

ヘロト ヘワト ヘビト ヘビト

Evolution in the lab Evolution on simple and complex media

speed of adaptation (theory)

non-epistatic fitness landscape (Levine's talk)

$$w(\sigma) = \prod_{i=1}^{L} \exp(s_i \sigma_i) \Rightarrow \frac{d \ln \bar{w}(t)}{dt} \sim \ln(NU)$$

Review : SCP, D. Simon and J. Krug, JSP 138, 381 (2010)
house-of-cards model with infinite number of sites

 $w(\sigma) =$ random number drawn from p(w)

if
$$p(w) = \exp(-w)$$
 and $\rightarrow \overline{w}(t) \sim \ln(NUt)$

SCP and J. Krug, J. Stat. Mech. P04014 (2008).

• a large population adapts faster than a small one.

・ロト ・同ト ・ヨト ・ヨト

Evolution in the lab Evolution on simple and complex media

speed of adaptation (theory)

non-epistatic fitness landscape (Levine's talk)

$$w(\sigma) = \prod_{i=1}^{L} \exp(s_i \sigma_i) \Rightarrow \frac{d \ln \bar{w}(t)}{dt} \sim \ln(NU)$$

Review : SCP, D. Simon and J. Krug, JSP 138, 381 (2010)
house-of-cards model with infinite number of sites

 $w(\sigma) =$ random number drawn from p(w)

if
$$p(w) = \exp(-w)$$
 and $\rightarrow \overline{w}(t) \sim \ln(NUt)$

SCP and J. Krug, J. Stat. Mech. P04014 (2008).

• a large population adapts faster than a small one.

・聞き ・ヨト ・ヨト

Evolution in the lab Evolution on simple and complex media

Outline

Introduction

- Evolution in the lab
- Evolution on simple and complex media

Advantage of small populations

- Three-locus model
- How generic is the three-locus model?

3 Summary

Introduction

Advantage of small populations Summary Evolution in the lab Evolution on simple and complex media

ъ

mean fitness after 500 generations Rozen et al., PLoS one **3**, e1715 (2008)

Evolution in the lab Evolution on simple and complex media

fitness trajectory (complex medium) Rozen et al., PLoS one 3, e1715 (2008)

★ Ξ → ★ Ξ →

э

Three-locus model How generic is the three-locus model?

Outline

Introduction

- Evolution in the lab
- Evolution on simple and complex media

2 Advantage of small populations

- Three-locus model
- How generic is the three-locus model?

3 Summary

Three-locus model How generic is the three-locus model?

Simple Model : Three-locus (L = 3)

- 000 : global minimum, 111 : global maximum
- smooth and rugged paths to the global maximum

Three-locus model How generic is the three-locus model?

Evolving population: Wright-Fisher Model

- multinomial distribution
- $f(\sigma, t)$: frequency of the genotype σ at generation t.
- $M(\sigma \leftarrow \sigma')$: mutation prob. from σ' to σ .
- $\bar{w}(t) = \sum_{\sigma} w(\sigma) f(\sigma; t)$: mean fitness

프 에 제 프 어

Three-locus model How generic is the three-locus model?

Background: Fixation

- fixation probability $\pi(s) \approx \frac{1 e^{-2s}}{1 e^{-2sN}}, \quad s = \frac{w_{\rm red}}{w_{\rm white}} 1$
- $Ns \gg 1$ and $0 < s \ll 1$, $\pi(s) \approx 2s$
- $Ns \gg 1$: strong selection regime

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Three-locus model How generic is the three-locus model?

Strong selection-weak mutation (SSWM) regime

- $NU \ll 1$: weak mutation regime \rightarrow "adaptive walk"
- Waiting time for (first event of) fixation

• from
$$w(000) = 1$$
 to $w(001) = w(010) = 1 + s_1$, $T_1 \approx \frac{1}{2\mu N s_1}$

• from
$$w(000) = 1$$
 to $w(100) = 1 + s_2$, $T_1 \approx \frac{1}{2\mu N s_2}$

From local maximum to global maximum

Path Probability

- *P_r*(*N*) : prob. that a population of size *N* takes the rugged path
- Reduced problem : three alleles (types) model $w(A) = 1, w(B) = 1 + s_1, w(C) = 1 + s_2 (s_2 > s_1).$ $M(A \rightarrow B) = 2\mu, M(A \rightarrow C) = \mu$
- $N\mu \ll 1$: fate of mutations is independent from each other

$$P_r|_{N\mu\ll 1} \approx rac{\pi(s_2)}{\pi(s_2) + 2\pi(s_1)}$$

• $N\mu \gg 1$: type *C* should appear with large numbers in one generation

$$\lim_{N\to\infty}P_r=1$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Three-locus model How generic is the three-locus model?

Path probability : approximate formula

Three-locus model How generic is the three-locus model?

Path probability : approximate formula

Three-locus model How generic is the three-locus model?

Evolution on the fitness landscape

Three-locus model How generic is the three-locus model?

Experiment Rozen et al., PLoS one **3**, e1715 (2008)

Su-Chan Park Advantage of small populations

Three-locus model How generic is the three-locus model?

Estimating the (beneficial) mutation probability

- size of small population in the experiment $= 5 \times 10^5$
- size of selection coefficient ≈ 0.1
- Criterion of the small population advantage

$$N\mu\log(Ns)\sim 1 \rightarrow \mu \approx 10^{-6}$$

cf: Perfeito et al. (2007) : 10^{-5}

ヘロト 人間 ト ヘヨト ヘヨト

Three-locus model How generic is the three-locus model?

Outline

Introduction

- Evolution in the lab
- Evolution on simple and complex media

2 Advantage of small populations

- Three-locus mode
- How generic is the three-locus model?

3 Summary

Three-locus model How generic is the three-locus model?

House-of-cards model

House-of-cards model

$$w(\sigma) = 1 + Sx$$

S : a parameter which controls the strength of selection (0.1) x : a random number drawn from $p(x) = e^{-x}$. w(000...) = 1 (global minimum)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Three-locus model How generic is the three-locus model?

Probability of being advantageous

• *P*(*t*, *N*, *N'*) : probability that a random landscape confers larger mean fitness to a population of size *N* than to that with size *N'* at *t*.

Su-Chan Park Advantage of small populations

- Three-locus model with smooth and rugged evolutionary paths
 - analytic expression for taking rugged path
 - criterion for the small population advantage $N\mu \ln N \sim O(1)$
- House-of-Cards model
 - With a certain probability, the three-locus model behavior is observed
 - For finte *L*, there is a regime where a small population has advantage
 - cf: for infinite L, $\bar{w}(t) \sim \ln(NUt)$ (the larger, the faster)

・ロト ・同ト ・ヨト ・ヨトー