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Evolution in action in the lab
S. F. Elena and R. E. Lenski, Nat. Rev. Genetics 4, 457 (2003).

R. Lenski, Michigan State University

50,000 generations in Feb. 2010 (6 generations a day)
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Fitness and fitness landscape

fitness w(σ): average number of offspring
genotype σ = (σ1, σ2, . . . , σL) (σi = 1 or 0)
fitness is a function of genotypes (and environment).
selection coefficient s =

w
w′
− 1.

fitness landscape w(σ) :
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adaptation (natural selection): hill-climbing process
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speed of adaptation (theory)

non-epistatic fitness landscape (Levine’s talk)

w(σ) =

L∏
i=1

exp(siσi)⇒
d ln w̄(t)

dt
∼ ln(NU)

Review : SCP, D. Simon and J. Krug, JSP 138, 381 (2010)
house-of-cards model with infinite number of sites

w(σ) = random number drawn from p(w)

if p(w) = exp(−w) and → w̄(t) ∼ ln(NUt)

SCP and J. Krug, J. Stat. Mech. P04014 (2008).
a large population adapts faster than a small one.
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mean fitness after 500 generations
Rozen et al., PLoS one 3, e1715 (2008)

Small : 5× 105
Large : 2.5× 107
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fitness trajectory (complex medium)
Rozen et al., PLoS one 3, e1715 (2008)

small population large population
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Simple Model : Three-locus (L = 3)

101 111

011

110100

010

001

000

w(000) = 1,

w(001) = w(010) = 1 + s1,

w(100) = 1 + s2,

w(011) = w(101)

= w(110) = (1 + s1)2,

w(111) = (1 + s1)2

(1 + s1)2 < 1 + s2 < (1 + s1)3

000 : global minimum, 111 : global maximum
smooth and rugged paths to the global maximum
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Evolving population: Wright-Fisher Model

time

U

U

U

U

f (σ; t + 1) =
∑
σ′

M(σ ← σ′)
w(σ′)

w̄(t)
f (σ′; t)

multinomial distribution
f (σ, t) : frequency of the genotype σ at generation t.
M(σ ← σ′) : mutation prob. from σ′ to σ.
w̄(t) =

∑
σ w(σ)f (σ; t) : mean fitness
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Background: Fixation

time

U

U

U

U

fixation probability π(s) ≈ 1− e−2s

1− e−2sN , s =
wred

wwhite
− 1

Ns� 1 and 0 < s� 1, π(s) ≈ 2s

Ns� 1 : strong selection regime
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Strong selection-weak mutation (SSWM) regime

NU � 1 : weak mutation regime→ “adaptive walk”
Waiting time for (first event of) fixation

from w(000) = 1 to w(001) = w(010) = 1 + s1, T1 ≈
1

2µNs1

from w(000) = 1 to w(100) = 1 + s2, T1 ≈
1

2µNs2
From local maximum to global maximum

Tesc ≈
sdel

4Nµ2sben

sdel =
w(100)

w(101)
− 1 ≈ s2 − 2s1

sben =
w(111)

w(100)
− 1 ≈ 3s1 − s2

101 111

011

110100

010

001

000
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Path Probability

Pr(N) : prob. that a population of size N takes the rugged
path
Reduced problem : three alleles (types) model
w(A) = 1, w(B) = 1 + s1, w(C) = 1 + s2 (s2 > s1).
M(A→ B) = 2µ, M(A→ C) = µ

Nµ� 1 : fate of mutations is independent from each other

Pr|Nµ�1 ≈
π(s2)

π(s2) + 2π(s1)

Nµ≫ 1: type C should appear with large numbers in one
generation

lim
N→∞

Pr = 1
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Path probability : approximate formula

Pr = 1− 2π(s1)

π(s2) + 2π(s1)
exp (−Nµ ln(Ns1)π(s2)/s1) .
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Figure 4: Fixation probability Pr of the allele C for the simplified three alleles system obtained using
numerical simulations for µ = 10−5 (triangles), 10−6 (circles), and 10−7 (squares) for given sets of s1 and
s2. The left (right) panel depicts the simulation results using s1 = 0.01 (0.02) and s2 = 0.025 (0.05).

Figure 5: Region in the (N, µ)-plane where a transient advantage for small populations arises when s1 = 0.02
and s2 = 0.05.

expression for Pr(N) in this regime, we first reduce the three-locus problem into a single locus with three

alleles, say A , B, and C with respective fitness 1, 1 + s1, and 1 + s2. The two genotypes {010} and {001}

are lumped into a single allele B. The mutation from A to B occurs with probability 2µ and that from A

to C with µ. No other mutation is possible, which ensures that either B or C will be eventually fixed. It is

clear that the fixation probability of allele C approximates Pr.

In Methods we present an approximate calculation of Pr for the three-allele model using ideas from clonal

interference theory. The result is

Pr = 1 − 2π1(s1)

π1(s2) + 2π1(s1)
exp(−Q(N)), (11)

where

Q(N) = Nµ ln(Ns1)π1(s2)/s1 (12)

and π1(s) is given in Eq. (21). The expression (11) interpolates smoothly between the limits (7) and (10),

and agrees well with simulations of the three-allele model (Figure 4). For small µ a plateau corresponding

to the SSWM value (8) appears.

The increase of Pr beyond its adaptive walk value (7), which ultimately gives rise to the reversal in the

ordering of fitness with increaing population size in Figure 2, takes place when Q(N) = O(1), that is, when

Nµ ln(Ns) ∼ 1, (13)

8

π(s) =
1− e−2s

1− e−2sN
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Evolution on the fitness landscape
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Figure 2: Average fitness as a function of time on the fitness landscape defined by Eq. (1) for µ = 10−5

and (left) s1 = 0.1, s2 = 0.25 and (right) s1 = 0.02, s2 = 0.05. As a guide to the eyes, the maximum
fitness values W (111) for each cases are also drawn. The data have been averaged over 105 histories. Fitness
increases with population size at short time and at long times, but in both cases this relationship is inverted
for a range of population sizes at intermediate times.

which express the relative fitness advantage of the global optimum compared to the local peak (sben) and

that of the valley genotypes compared to the local peak (sdel), respectively. Depending on the population

size, the peak escape can proceed through two distinct pathways. In small populations the two mutations

separating the genotypes {100} and {111} fix sequentially, while in large populations they fix

simultaneously. Inspection of the expression [12] for the critical population size separating the two regimes

shows that, for the parameters used in the present work, the simultaneous escape mode dominates for

population sizes N > 1000. In the simultaneous mode the escape time is given approximately by

Tesc ≈ sdel

4Nµ2sben
. (5)

Assuming all selection coefficients s1, s2, sben, sdel to be of a similar magnitude s, we see that

Tesc

T1,2
∼ s

µ
# 1 (6)

whenever µ $ s, which is expected to hold under most conditions. In particular, it is true in the regime of

strong selection and weak mutation (SSWM), where Nµ $ 1 and Ns # 1 [16,17]. The relation (6) implies

that the evolution time Trugged along a rugged path is dominated by the escape time Tesc, and is much

larger than Tsmooth. However, both expressions (3) and (5) share the same dependence on population size

N , so once the type of evolutionary path is chosen, a large population is always at a relative advantage.

5

s1 = 0.02
s2 = 0.05
µ = 10−5
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Experiment
Rozen et al., PLoS one 3, e1715 (2008)

contingency of evolution in any experimental environment. In
order to overcome this limitation, we performed computer
simulations of populations evolving on adaptive landscapes where
the levels of mutational epistasis could be explicitly defined. The
simulations enabled us to consider the evolutionary response of small
and large populations over a vastly extended time scale which
allowed us to determine if our simulated populations had reached a
local or global fitness peak. Additionally, the simulations allowed us
to focus exclusively on the role of epistasis, where in the experiments
there remains the possibility that population divergence resulted, at
least partially, from differential niche specialization.
In our computer simulations, digital bacteria undergo iterated

cycles of exponential growth and serial dilution. Every clone grows
according to a fitness value that is initially scaled to 1. Additionally,
every clone has a fitness neighbourhood of fixed size L, which
corresponds to the number of possible 1-step mutations the clone
can reach. During growth, mutant offspring arise at a rate, m, and
thereby obtain a new fitness value that corresponds to one of the L
neighbouring fitness values. Each mutant clone can either retain a
fraction of the fitness neighbourhood of its parent, or obtain an
entirely new fitness neighbourhood. If the parental fitness
neighbourhood is retained, the result is a smooth fitness landscape
with few maxima among the L fitness values and no epistasis. At
the other extreme, if all fitness neighbours are replaced, the result
is a maximally rugged fitness landscape with complete epistasis
and many local optima. In both cases, the landscapes we utilize are
likely to be exaggerated versions of what might be found in nature.
Our use follows earlier pioneering fitness landscape simulations
[38–41], and is intended to establish the simplest boundary
conditions and to complement but not to faithfully reproduce the
experiment.
Broadly, the simulations provide strong qualitative support for

our interpretation of the experimental results. Figures 3a and 3b
show the fitness trajectories for fifty individual small or large
simulated populations evolving on either a smooth (Fig. 3a) or
rugged (Fig. 3b) fitness landscape. In a manner consistent with our
experimental results, a number of small populations on the rugged
landscape, but not on the smooth landscape, obtain higher long-
term fitness than even the most fit large populations. That this
result is only found on the rugged landscape supports the idea that
the dynamics of fitness gain are highly dependent on the
topography of the underlying fitness landscape, with epistatic
interactions among mutations providing the critical advantage to
small populations. We next calculated the time averaged variation
in fitness among small and large populations as a function of

landscape topography (Fig. 3c), from which we draw two
conclusions. First, this analysis shows that among population
heterogeneity is higher for small than large populations irrespec-
tive of landscape complexity. Secondly, it reveals that variance in
evolutionary response is increased for both small and large
populations during adaptation on rugged adaptive landscapes
relative to their behaviour on the smooth landscape. This latter
effect is likely the result of the fact that rugged landscapes contain
more fitness peaks, while the former is a consequence of the fact
that small populations follow more heterogeneous adaptive
trajectories. Most interestingly, these simulation results show that
the benefits that accrue to small populations by following diverse
adaptive trajectories are only realized when fitness is determined
by epistatic interactions among beneficial mutations. Otherwise,
small populations remain adaptively constrained.
In summary, our data provide experimental and theoretical

evidence that limits to adaptation in small populations can be
overcome during evolution on complex fitness landscapes. Further-
more, we show that the topography of the fitness landscape is an
important determinant of this outcome, because those small
populations with the greatest final fitness improvement were ones
that initially ascended relatively shallow slopes. It is important to note
that benefits from more effective landscape searching are far from
assured in small populations. Indeed, many small populations, both
in the experiment and in the simulations, faced handicaps consistent
with their diminished access to beneficial mutations of large effect.
However, whereas the outcome of adaptation in large populations is
nearly deterministic, adaptation in small populations can generate
unpredictable results and unexpected benefits.
Although our experiments were not designed to specifically test

Wright’s Shifting Balance Theory [24] which was developed to
understand the evolution of novelty and complexity in sexual
species [42], it has not escaped our notice that our results are of
particular relevance to Phases 2 and 3 of the theory. In Phase 2,
populations previously displaced from their original adaptive peaks
via genetic drift in Phase 1, are envisioned to ascend new peaks via
the accumulation of beneficial mutations. Genetic drift in small
populations, in Phase 1, and epistatic interactions among
mutations, in Phase 2, are thought to facilitate this process. The
results here, despite the fact that they were obtained from an
asexual species, are consistent with this view in two ways. First, we
find that small populations are better able to locate a diverse range
of fitness peaks than large populations, and second that advantages
to this diversity are only realized on landscapes where epistatic
interactions are expected to be common. In Phase 3, migration

Figure 2. Fitness trajectories of 12 small (A) and six large (B) populations evolving in the complex environment. Dotted lines highlight
small populations that have attained higher fitness than other small and even the most fit large populations (see text for details).
doi:10.1371/journal.pone.0001715.g002

Adaptation and Population Size

PLoS ONE | www.plosone.org 3 March 2008 | Volume 3 | Issue 3 | e1715
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Estimating the (beneficial) mutation probability

size of small population in the experiment = 5× 105

size of selection coefficient ≈ 0.1

Criterion of the small population advantage

Nµ log(Ns) ∼ 1→ µ ≈ 10−6

cf: Perfeito et al. (2007) : 10−5

Su-Chan Park Advantage of small populations



Introduction
Advantage of small populations

Summary

Three-locus model
How generic is the three-locus model?

Outline

1 Introduction
Evolution in the lab
Evolution on simple and complex media

2 Advantage of small populations
Three-locus model
How generic is the three-locus model?

3 Summary

Su-Chan Park Advantage of small populations



Introduction
Advantage of small populations

Summary

Three-locus model
How generic is the three-locus model?

House-of-cards model

House-of-cards model

w(σ) = 1 + Sx

S : a parameter which controls the strength of selection
(0.1)
x : a random number drawn from p(x) = e−x.
w(000 . . .) = 1 (global minimum)
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Probability of being advantageous

P(t,N,N′) : probability that a random landscape confers
larger mean fitness to a population of size N than to that
with size N′ at t.

a b
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Three-locus model with smooth and rugged evolutionary
paths

analytic expression for taking rugged path
criterion for the small population advantage Nµ ln N ∼ O(1)

House-of-Cards model
With a certain probability, the three-locus model behavior is
observed
For finte L, there is a regime where a small population has
advantage
cf: for infinite L, w̄(t) ∼ ln(NUt) (the larger, the faster)
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