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Outline

@ Modified Fluctuation Dissipation Theorems (MFDT)r f
Non Equilibrium Steady State (NESS)

@ Fluctuation Theorem for systems driven out of Eojuim
by a random force.



Modified Fluctuation Dissipation
Theorems (MFDT)

Motivation: Test in an experiment the new FDT for
an out of equilibrium system

Outline :

@ MFDT Three formulations: 1) Lagrangian FDT
2) Frenesy FDT
3) Generalized FDT
@ Langevin dynamics
@ Experimental realisation
@ Results



Fluctuation Dissipation Theorem (FDT)

In equilibrium FDT takes the form :

1
kT

R(t —s) = 0sC(t — s)

Observable O4(0) of the dynamical process 6
and its conjugated variable h

Correlation function
C(t— S) =< Ot OS >

Response function to a delta perturbation of h

R(t —s) =< %= >




L angevin Dynamics

with < n(t)n(t’") >= 2kgTvé(t —t')

G non conservative force

with G = 0 equilibrium FDT holds

with G %= 0 the system is driven into
a non equilibrium steady state (NESS)
where equilibrium FDT does not hold




Modified Fluctuation Dissipation Theorem (MFDT)

for NESS
R. Chetrite, G. Falkovich, and K. Gawedzki, J. Stat. M ech.PO8005 (2008).

1
kT

RE(t, s) = sCL (¢, )

RL and C¢L are measured in the Lagrangian frame
moving at mean local velocity vg(60)

The new observable O(t,6) evolves according to :

0:0(t,0) +vg(0) - VO(t,0) =0



MEDT for NESS

The MFEDT in the lagrangian frame,

1
kT
can also be written in the laboratory frame, replacing
Js in FDT with the convective derivative 0s + V - vg(0)

RE(t, 8) = — 0sCL (¢, 5),

MFEDT mes: __ . . -
beco This Is the equality that we want to test

R(t —s) kT = 0sC(t —s) — b(t — s)

where

b(t —s) =< O(t,0)vg(0(s))0y0O(s,0) >




MEDT for NESS

In experiments iIs much safe to use the integral form
x(t —s) kgT = [C(0) = C(t = s)] = B(t — s)

x(t — s) is the integrated response and

B(t—s) = /S b(t —t))dt’

O
Wetest thisequality on the Langevin dynamics

yr = —0;U(z) + G +n
with < n(t)n(t’) >= 2kgTvé(t — t')

G = constant 7= 0 non conservative force



Experiment with optical trap
et us consider first the case with U = 0

v = G+ 1

G = constant = 0 non conservative force

We use a Bownian particle confined in an opticaptr

The experimental set up



Optical traps

Nano-Max
Pizo-stage

LS white light source

DM dichroic mirror

M mirror

IRF infrared filter

IF  interference filter

P polarizer

A analyzer

QD quadrant photo diode



Examples of traps

The Kramer rate is
_ -1 38U
L = T, exp( —kBT)



Experiment with optical trap
et us consider first the case with U = 0

v = G+ 1
G = constant = 0 non conservative force
The motion of the particle is confined on a circle of radius a
r=a 0 with 0<60<27
This is achieved by a circular sweeping of the |&&sam

How G Is obtained ?



Particle motion with U=0

va=G+n

v=0mTrm

vo =< 0 >= G /v

a=45um, r=1um , n = 1073Pa,
We obtain G = 6.60 10~ 14N from
the measure of vg = 0.85rad/s
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Particle motion with potential

80

601

Periodic potential U = Asin(0 4+ ¢)

va’ 0= —-9U)+F—+na
F = G a = constant non conservative torque

The potential U is produced by a modulation (5%ihe laser intensity



PDF of the particle position

u@) /k, T

0 (rad)

j = probability current = < 0 >q /(27)
p(0) = probability density

vo(9) = iy
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L ocal mean velocity
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j = probability current = < 6 >q /(27)
p(6) = probability density

vo(0) = 575y



The observable O(0)

To measure the response, the perturbation is applied in the follwing way:
UB) — UO) +6A sin(0 4+ ¢)

Thus the observable is O(6(t)) = sin(0(t) + ¢)

U(e) /k, T

— A
_60F|__ _A+0A
SA=005A




Time evolution of O(t)

-0.9



MFEDT for NESS
The observable is: O(0(t)) =sin(6(t) + )

(t) kgT = [C(0) — C(8)] — B(t)
with
B(®) = [ < 0(0(t))e0(6(t))3y00(0)) > df

C(t) =< 0(6(t))0(6(0)) >
The integrated response x(t)

to a Heaviside perturbation of A, switched on at t = 0, is:

_<O0@0(t))sa— OOt +t*))o >
x(t) = 1

such that O(0(0))54 = O(8(t"))o




Correlation function and B(t)
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Theintegrated response

to a Heaviside perturbation of A, switched on at ¢t = 0, is:
<O@(t)sqa— OOt + t* >
W(6) = 5A (6( ))o

, with 0(6(0))s54 = O(0(t")o

0A

e Select 200 unperturbed trajectories
such that at time t*

0(6(0))s4 = O(6(t"))o

e Compute the mean of

O0(t))sa — OO +1"))o
on the 200 trajectories

e Repeat the procedure
on several perturbations
and make the average

Perturbed trajectory




Theintegrated response

to a Heaviside perturbation of A, switched on at ¢t = 0, is:
_ <O0@0(t)sa— OOt +1t*))o >
x(t) =

, with 0(6(0))s54 = O(0(t")o

0A
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MFDT
x(t) kpT = [C(0) — C(¢)] — B(1)

0.25

— C(0)-C(t)
---B()
02r
i C(0)-C(t)-B(h) .-
— ke, Tt -
0.15¢

0.1+

0.057




MFDT
x(t) kpT = [C(0) — C(¢)] — B(1)
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Conclusonson MFDT

based on a Lagrangian formulation

We have shown that MFDT holds for a bead moving
In a toroidal optical trap and submitted to a non
conservative force and to a periodic potential.

The results can be interpreted as an equilibfiken
FDT in the Lagrangian frame moving at the velocity
determined by the probability current.

The main drawback of the methsdthe knowledge of

the probability current which is not always obvidas
measure.



MFEDT based on frenesy

E. Lippiello, F. Corberi, and M. Zannetti, Phys. ReV/&,(036104) 2005.
M. Baiesi, C. Maes and B. Wynants, Phys. Rev. Lett., DA8602) 20009.

U(qg) — U(q) — hsV(q)

(O(g))n — (O(at))o
h Y

/
xov () = /o Roy(t,s)ds =

xqv () = 2[Coy(0) — Coy (1) + K (1],
Cov (t) = (V(q0)O(at))o;
K(t) = — [§{LV (gs)O(qs))o ds,

The frenesyLV (q) can be regarded as a generalized escape rate of a
trajectory from a given phase-space poj(iBaies et al).



MFEDT based on frenesy

N our experiment

v a2 = Aa%gm F+na

UB) = A O(0) with O(0) ~sin(6 + ¢)
and V(0) =U(H)

U(0) — U(6) — 22U (9)

You () = AUOCOM—OGE+N0) — 4 (1)

with O(8(0))s4 = O(6(t*))g



MFEDT based on frenesy
xov(®) = 5[Cov (0) ~ Coy (1) + K (1),
t
K(t) = - [ (LV(2:)0(a))ods,

For the Langevin dynamics of 6 the analytical expression
of the generator L is

L=_1 5 [(F — AO'(0))8y + kBTag.}
UV Q
Hence in this case
C(0) — C(t K
et () = CO = CO+E®,

2
where the entropic and frenetic terms are

A C(t) = A (O(00)O(0t))o = Covy(t)

K1) = AR =~ [Mas(ihpT 0"(09) + (F — 4 0'(8,)) 0610000,



Resultson the FDT based on frenesy

T (a) =TT 03 .
(b)
0.5} 0ol
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b) The Markofian nature of the
system



Generalized FDT

The starting point is the Hatano-Sasa relatiorMarkofian process

plc, A%) = exp[—d(c, A®)]. Probability density
for a NESS

d(c: A) = —log|plc; A)] Pseudo-potential

<exp{fr dtA (1) d(’b((ﬂ;;/l(r))}) = 1,

]

Hatano-Sasa

The average is taken over a large number of remibdf a
given dynamical process defined by the variatioh(of



Generalized FDT

ol [ a2ty

Consider small variations of the control parameters
around a steady-state valve

SA() = A1) — A with  SA(;) = 0]

Expanding to second order in the integrand and ¢gaikito
account the normalisation conditions one obtains:

J. Prost, J.F. Joanny, J.M. Parrondo, PRL 103, 09C&IB}



Generalized FDT

<E}(,ES({:(I]: AHH)) _ er nf’}f(‘r . I‘F)S/)L},(If)df;,

dA
d
(r—f") =—C, r—r")
dt
(dq‘)(c 1); A%) ad(c(r); A““)>
d.’ dA, t’)/)l}, $$

Where now<.>ss is computed on the sationary state

Xa(t) = %qu(i) is the observable

J. Prost, J.F. Joanny, J.M. Parrondo, PRL 103, 09C&IB}



X (t) = 5¢(%(;51),A)

Generalized FDT

In the experiment

15
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Generalized FDT

In the experiment

— 9¢(0(1),A)
X(t) = 51 _
5 )
mﬁ
. . % i — X0,
Time evolution of X € L poum
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Generalized FDT

The response function in the experiment

<3¢(9(t))

o > /R(t—t)(SA(t)dt

If A is an Heaviside perturbation

0¢(6(%))
(02) # e -com

o) — <a¢(§§t)) 6¢(§§O>)>

Experimentally it does not @

where




Generalized FDT

The response function in the experiment

<3¢(9(t))

o > /R(t—t)(SA(t)dt

09 (0(t))
0A

0p(0(t))\ \_ [t : N
_< o > = [ R(t—t) sA@) dt

This is zero in the case of infinite sampl‘ng

In the case of finite sampling two effects hasd¢ddken into account



Generalized FDT

In the case of finite sampling two effects hasdddken into account

025

The Hatano-Sasa relation | A'n:kex'p(_m }'{(et;mbﬂ_“
Is not exactly 1 X(0:.4) =3, 2(6: 4) f
and qﬁ 0.15
0p(6(t
sOW)\
0A o5

D

D

D)

¢
=1

| 1
10° 10' 10° 10° 10* 10

The integrated response must be computed :
<8¢(9(t))> _ <8¢(9(t+t*))>
DA

0A

88 — ~(t
SA X()

under the contion <3¢(9(0))> _ <3¢(9(t*>>>
04 0A ss
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Generalized FDT

o = <a¢§§t>> 8¢(§f”>

x(t) = (C(0) — C(¥))

— C(0) — C(1) |
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Generalized FDT

C(t) = <8¢(9(m a¢<9(°))> x(t) = (C(0) = C(1))

0A 0A
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® GFDT as been checked onthe |
experimental data taking into
account the finite sampling.
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® It is certainly the more general ra
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Conclusionson FDT on NESS

We checked three formulations of FDT for NESS

The Langrangian formulation can be applied to arpc@ss
but the knowledge of the current is needed

The frenesy formulation needs the knowledge of the
generator of the dynamics, but it can in principdeapplied to
non-stationary cases. It is limited to Markofianteyss

The formulation based on Hatano-Sasa relation taicdy
the most general of the three if the dynamics asKdfian



FR for NESSdriven by arandom forcing

Motivation :

We consider a Langevin dynamics driven out of eopilm

mx +yr = —kx + Cr + fo.

and W

i 4T
= (L t)dl.
o) HORE)

if fo iIs deterministic the Fluctuation Theorem holds.

CPW=W) W e
Il > .
PW, = W)  kgT’ -

What happens if the external force is random ?



FR for NESSdriven by arandom forcing

AFM cantilever

The experiment

mX +~vX = —kX + (r

—~ -11
N T T .
= 10 ;
%4 ]
= PRI T -
= 12 ommercial
- —~ 10 3 -\ﬁ‘ }— -l'\‘i— W -[‘ 4 LA A ' -E
= .
P S -13
hh""\-\-._\_\__,_- rte P-C 10
g Free cantilever
VAT 2 o
EC — %(1(‘\ H - kS 14
<« @ 10 ) -
B Background noise }
Fre — Bl = —aghi2 :
&
0 1 2 3 4 5
10 10 10 10 10 10

a =15 [Z)NA/2 Frequency f/Hz



FR for NESSdriven by arandom forcing

AFM cantilever J The experiment

}Tﬂ"' '}’?'E‘.-ji} - r-}jf e el N - CT . F

F=F+jo
R
h S
T | ma + vt = —kx + (r + fo.
E. = 3C(X)V?

fois random Gaussian force with
white spectrum



FR for NESSdriven by arandom forcing

e,
The relevant control parameter is o — £/ _ 1

25

20+

(22) eq ' where

O experimental data
= = =guadratic it




FR for NESS driven by arandom forcing
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FR for NESSdriven by arandom forcing

wh = 1¢ 7 k(z?)/kg=(1+a)T~aT
7T 14+«
)= i R e m—wry |7 T L e w23
Farago J., Physica A, 331 (2004) 69.
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FR for NESSdriven by arandom forcing

Conclusions

@ We have studied the FT for the work fluctuationsno
experimental systems in contact with a thermal bath
driven out of equilibrium by a stochastic force.

@ The main result of our study Is that the validify~0 Is
controlled by the parameter . Far< 1 we have shown that
the validity of the steady-state FT is a very rolvesult.

@ In contrast foilr >1 , when the randomness of

the system becomes dominated by the external fticha
forcing, we have shown that FT is violated.

@ Fora >>1 the data can be described by a master cur\reawit
suitable effective temperature



