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Introduction and Motivation

Central Limit Theorem states the the limiting distribution for the scaled
fluctuation is Gaussian. (1/2 power law of exponent)

KPZ(Kadar-Parisi-Zhang) predicted scale exponents 1/3 for fluctuation (and
2/3 for spatial correlation) for a large class of models.

What are limiting distributions for KPZ universality class ?
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Tracy-Widom distribution

GUE ensemble

The Gaussian Unitary Ensemble (GUE) is defined as a sequence PN of Gaussian
probability measure on N ×N Hermitian matrices of the form

dPN (M) =
1
ZN

etr(M
2)dM

where ZN is a normalizing constant.

Tracy-Widom distribution;1994

Distribution of the largest eigenvalue in a Gaussian unitary random matrix
ensemble

lim
N→∞

PN
(√2Nλ1(M)− 2N

N1/3
≤ s
)

:= TW2(s)
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Fluctuation of the length of the longest increasing subsequence of a random
permutation (Baik, Deift, Johansson; 1999)

lim
n→∞

P
(Ln − 2

√
n

n1/6
≤ s
)

= TW2(s)
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Fluctuation of the current of the TASEP on Z with step initial
condition (the corner growth model) (Johansson;2000)

F0(t): the total number of particles that have crossed from 0 and 1 during the
time [0, 1]

lim
t→∞

P
(F0(t)− Jt

V t1/3
≤ s
)

= 1− TW2(−s)

where J and V are some constants
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Techniques to obtain the Tracy-Widom distribution

Combinatorics : Robinson-Schensted-Knuth (RSK) type bijection
- Longest increasing subsequence of a random permutation
- Discrete TASEP

(Coordinate) Bethe ansatz for continuous-time ASEP on Z
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Bethe ansatz for ASEP on Z

(Schütz;1997) Transition probability PY (X; t) of N -particle
(continuous-time) TASEP

It is a determinant of which entries are hypergeometric functions.

Entries have special properties.

PY (xm(t) = x) is obtained by summing PY (X; t) over all possible
configurations

Asymptotic study of PY (xm(t) = x) for step initial condition rediscovers
Johannsson’result (Nagao, Sasamoto;2004, Rákos, Schütz;2005)

How about ASEP ?
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Tracy and Widom’s works on ASEP;2008,2009

Exact expression for the transition probability of N -particle system : the sum
of N ! N -dimensional contour integrals

PY (xm(t) ≤ x) to use some special identities

Obtained a closed form of PY (xm(t) ≤ x) when Y is step initial condition
and expressed it as a Fredholm determinant

Asymptotic analysis of the Fredholm determinant → 1/3 law

lim
t→∞

P
(T ([−vt], t)− a1t

a2t1/3

)
= 1− TW2(−s)

where T ([−vt], t) is the number of particles of which positions are less than
or equal to [−vt] at t, and 0 ≤ v < 1, a1, a2 are some constants.
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More results on particle models

TASEP with flat initial condition : TW1 (Borodin, Ferrari, Sasamoto; 2007)

(one-sided) pushing asymmetric simple exclusion process (PushASEP) :
TW1, TW2 (Borodin, Ferrari;2008)

Depending on the geometry of initial conditions

Based on determinantal form of transition probabilities

Distribution of the Hopt-Cole solution of the KPZ equation with narrow edge
initial condition based on Tracy-Widom’s ASEP results
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Dynamics of N -particle two-sided PushASEP

Each site is occupied by at most one particle or empty.

Each particle is equipped with 2N Poisson clocks with rates prn and qln with
p+ q = 1 and n = 1, · · · , N and all clocks are independent.

If (1) the clock with rate prn(qln) of the particle at x rings, (2)
x+ 1, · · ·x+ n− 1 (x− 1, · · · , x− (n− 1)) are occupied and (3)
x+ n (x− n) is empty, then the particle at x jump to x+ n (x− n).

Otherwise, nothing happens and the clock resumes.
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Bethe ansatz applicability (Sasamoto, Wadati;1998)

Constraint on rn and ln;

1−
(
λ
µ

)n
1− λ

µ

=
1
rn

1−
(
µ
λ

)n
1− µ

λ

=
1
ln

with λ+ µ = 1.
λ→ 0; pushing dynamics on the right with constant rate p and TASEP dynamics
on the left with rate q, that is, one-sided PushASEP.
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Transition probability of the two-sided PushASEP (L;2012)

Let λ+ µ = 1 (1/2 < µ ≤ 1) and CRi (i = 1, · · · , N) be a circle oriented
counterclockwise, centered at 0 with radius Ri. Assume that
1 < R1 < · · · < RN < c where

c =

{
µ
λ if λ 6= 0
∞ if λ = 0.

The transition probability of the two-sided PushASEP is

PY (X; t) =
∑
σ∈SN

( 1
2πi

)N ∫
CRN
· · ·
∫
CR1

A†σ

N∏
i

(
ξ
xi−yσ(i)−1

σ(i) eε(ξi)t
)
dξ1 · · · ξN

where

A†σ =
∏
i<j,

σ(i)>σ(j)

ξσ(i)

ξσ(j)
· Sσ(i)σ(j).

and

Sβα := −µ+ λξαξβ − ξα
µ+ λξαξβ − ξβ

(µ+ λ = 1)
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Difference between S-matrices of the ASEP and the
two-sided PushASEP

For the Bethe ansatz solution ∑
σ∈SN

Aσ
∏
i

ξxiσ(i)

ASEP

Sβα := −p+ qξαξβ − ξβ
p+ qξαξβ − ξα

where α < β.

Two-sided PushASEP

Sβα := − ξβ
ξα
· µ+ λξαξβ − ξα
µ+ λξαξβ − ξβ

where α < β.

This difference requires new proof.
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Contours of the ASEP and the two-sided PushASEP

ASEP: Cr sufficiently small r < 1 and same for all variables

Two-sided PushASEP: CRi with 1 < R1 < · · · < RN < µ
λ for variable ξi
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Main part of the proof

Show the initial condition; PY (X; 0) = δY (X). In the sum
∑
σ∈SN

the term for σ = identity contributes to δY (X)
all other terms for σ 6= identity give 0.

mathematical induction
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PY (xm(t) = x)

Probability that the mth leftmost particle is at x at time t

PY (xm(t) = x) =
∑

all possible X

PY (X; t)

xm+1 = x+ z1, xm+2 = x+ z1 + z2, · · · , xN = x+ z1 + · · · zN−m, zi ∈ N
xm−1 = x− v1, xm−2 = x− v1 − v2, · · · , x1 = x+ v1 + · · · vm−1, vi ∈ N

PY (xm(t) = x) =
∞∑

all vi,zi=1

PY (X; t)

The sum is a multiple geometric series which can be shown to be convergent.

Eunghyun Lee (University of Helsinki) 5th KIAS Statistical Physics Conference July 5, 2012 16 / 20



Main result PY (xm(t) = x) (L;2012)

Let S = {s1, · · · , sk} ⊂ {1, · · · , N} with si < si+1 and

I(ξ; s1, · · · , sk) =
∏
i<j

ξsi − ξsj
µ+ λξsiξsj − ξsj

· 1∏
s∈S(ξs − 1)

·
(∏
s∈S

ξs − 1
)

Then

PY (xm(t) = x)

=
∑
|S|≥m

cS

( 1
2πi

)k ∫
CRsk

· · ·
∫
CRs1

I(ξ; s1, · · · , sk)

∏
s∈S

ξx−(ys−s)−1
s eε(ξs)t dξs1 · · · dξsk .

where
ε(ξs) =

p

ξs
+ qξs − 1
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Coefficient cS

Notation

[N ] =
µN − λN

µ− λ
and

[N ]! = [N ][N − 1] · · · [1],
[
N

m

]
=

[N ]!
[m]![N −m]!

with [0]! = 1

cS = (−1)|S|+m(µλ)m(m−1)/2

[
|S| − 1
|S| −m

]
λΣ[S]−m|S|

µΣ[S]−|S|(|S|+1)/2

where Σ[S] is the sum of all elements in S.
- Surprisingly, cS for the two-sided PushASEP is in the same form as the cS for
the ASEP. (p, q instead of λ, µ)
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Sketch of the proof

(1) Find P(xN (t) = x); easy part using the same technique as the ASEP’s
P(x1(t) = x)

(2) Find P(x1(t) = x); hard part

(3) Use P(xN (t) = x) and P(x1(t) = x) to find general P(xm(t) = x)
- Interestingly, no new identities required (ASEP’s identities appeared in the
PushASEP as well.)
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More results to report and ongoing works

Possible to obtain Fredholm determinant representation of P(xm(t) = x) for
step (Bernoulli) initial condition by the same technique as the
Tracy-Widom’s.(But slightly different operator so easy to apply the ASEP’s
technique.)

Asymptotic analysis of the Fredholm determinant representation for the
Tracy-Widom law (ongoing)

Transition probability of the Bethe ansatz solvable zero range process on Z
(We found new identities which is a good signal in this direction of the work.)

Ultimately, we want to generalize the ASEP’s result to the Bethe ansatz
solvable AZRP (ongoing).

Thank you.
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