The current distribution of the pushing asymmetric simple exclusion process

Eunghyun Lee
Department of Mathematics and Statistics, University of Helsinki

July 5, 2012

Introduction and Motivation

- Central Limit Theorem states the the limiting distribution for the scaled fluctuation is Gaussian. ($1 / 2$ power law of exponent)
- KPZ(Kadar-Parisi-Zhang) predicted scale exponents $1 / 3$ for fluctuation (and $2 / 3$ for spatial correlation) for a large class of models.
- What are limiting distributions for KPZ universality class ?

Tracy-Widom distribution

GUE ensemble

The Gaussian Unitary Ensemble (GUE) is defined as a sequence \mathbb{P}_{N} of Gaussian probability measure on $N \times N$ Hermitian matrices of the form

$$
d \mathbb{P}_{N}(M)=\frac{1}{Z_{N}} e^{\operatorname{tr}\left(M^{2}\right)} d M
$$

where Z_{N} is a normalizing constant.

Tracy-Widom distribution;1994

Distribution of the largest eigenvalue in a Gaussian unitary random matrix ensemble

$$
\lim _{N \rightarrow \infty} \mathbb{P}_{N}\left(\frac{\sqrt{2 N} \lambda_{1}(M)-2 N}{N^{1 / 3}} \leq s\right):=T W_{2}(s)
$$

Fluctuation of the length of the longest increasing subsequence of a random permutation (Baik, Deift, Johansson; 1999)

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\frac{L_{n}-2 \sqrt{n}}{n^{1 / 6}} \leq s\right)=T W_{2}(s)
$$

Fluctuation of the current of the TASEP on \mathbb{Z} with step initial condition (the corner growth model) (Johansson;2000)

$F_{0}(t)$: the total number of particles that have crossed from 0 and 1 during the time $[0,1]$

$$
\lim _{t \rightarrow \infty} \mathbb{P}\left(\frac{F_{0}(t)-J t}{V t^{1 / 3}} \leq s\right)=1-T W_{2}(-s)
$$

where J and V are some constants

Techniques to obtain the Tracy-Widom distribution

- Combinatorics : Robinson-Schensted-Knuth (RSK) type bijection - Longest increasing subsequence of a random permutation - Discrete TASEP
- (Coordinate) Bethe ansatz for continuous-time ASEP on \mathbb{Z}

Bethe ansatz for ASEP on \mathbb{Z}

- (Schütz;1997) Transition probability $P_{Y}(X ; t)$ of N-particle (continuous-time) TASEP
- It is a determinant of which entries are hypergeometric functions.
- Entries have special properties.
- $\mathbb{P}_{Y}\left(x_{m}(t)=x\right)$ is obtained by summing $P_{Y}(X ; t)$ over all possible configurations
- Asymptotic study of $\mathbb{P}_{Y}\left(x_{m}(t)=x\right)$ for step initial condition rediscovers Johannsson'result (Nagao, Sasamoto;2004, Rákos, Schütz;2005)
- How about ASEP ?

Tracy and Widom's works on ASEP;2008,2009

- Exact expression for the transition probability of N-particle system : the sum of $N!N$-dimensional contour integrals
- $\mathbb{P}_{Y}\left(x_{m}(t) \leq x\right)$ to use some special identities
- Obtained a closed form of $\mathbb{P}_{Y}\left(x_{m}(t) \leq x\right)$ when Y is step initial condition and expressed it as a Fredholm determinant
- Asymptotic analysis of the Fredholm determinant $\rightarrow 1 / 3$ law

$$
\lim _{t \rightarrow \infty} \mathbb{P}\left(\frac{\mathcal{T}([-v t], t)-a_{1} t}{a_{2} t^{1 / 3}}\right)=1-T W_{2}(-s)
$$

where $\mathcal{T}([-v t], t)$ is the number of particles of which positions are less than or equal to $[-v t]$ at t, and $0 \leq v<1, a_{1}, a_{2}$ are some constants.

More results on particle models

- TASEP with flat initial condition : $T W_{1}$ (Borodin, Ferrari, Sasamoto; 2007)
- (one-sided) pushing asymmetric simple exclusion process (PushASEP) : $T W_{1}, T W_{2}$ (Borodin, Ferrari;2008)
- Depending on the geometry of initial conditions
- Based on determinantal form of transition probabilities
- Distribution of the Hopt-Cole solution of the KPZ equation with narrow edge initial condition based on Tracy-Widom's ASEP results

Dynamics of N-particle two-sided PushASEP

- Each site is occupied by at most one particle or empty.
- Each particle is equipped with 2 N Poisson clocks with rates $p r_{n}$ and $q l_{n}$ with $p+q=1$ and $n=1, \cdots, N$ and all clocks are independent.
- If (1) the clock with rate $p r_{n}\left(q l_{n}\right)$ of the particle at x rings, (2) $x+1, \cdots x+n-1(x-1, \cdots, x-(n-1))$ are occupied and (3) $x+n(x-n)$ is empty, then the particle at x jump to $x+n(x-n)$.
- Otherwise, nothing happens and the clock resumes.

Bethe ansatz applicability (Sasamoto, Wadati;1998)

Constraint on r_{n} and l_{n};

$$
\begin{aligned}
& \frac{1-\left(\frac{\lambda}{\mu}\right)^{n}}{1-\frac{\lambda}{\mu}}=\frac{1}{r_{n}} \\
& \frac{1-\left(\frac{\mu}{\lambda}\right)^{n}}{1-\frac{\mu}{\lambda}}=\frac{1}{l_{n}}
\end{aligned}
$$

with $\lambda+\mu=1$.
$\lambda \rightarrow 0$; pushing dynamics on the right with constant rate p and TASEP dynamics on the left with rate q, that is, one-sided PushASEP.

Transition probability of the two-sided PushASEP (L;2012)

Let $\lambda+\mu=1(1 / 2<\mu \leq 1)$ and $\mathcal{C}_{R_{i}}(i=1, \cdots, N)$ be a circle oriented counterclockwise, centered at 0 with radius R_{i}. Assume that $1<R_{1}<\cdots<R_{N}<c$ where

$$
c= \begin{cases}\frac{\mu}{\lambda} & \text { if } \lambda \neq 0 \\ \infty & \text { if } \lambda=0 .\end{cases}
$$

The transition probability of the two-sided PushASEP is

$$
P_{Y}(X ; t)=\sum_{\sigma \in \mathbb{S}_{N}}\left(\frac{1}{2 \pi i}\right)^{N} \int_{\mathcal{C}_{R_{N}}} \cdots \int_{\mathcal{C}_{R_{1}}} A_{\sigma}^{\dagger} \prod_{i}^{N}\left(\xi_{\sigma(i)}^{x_{i}-y_{\sigma(i)}-1} e^{\varepsilon\left(\xi_{i}\right) t}\right) d \xi_{1} \cdots \xi_{N}
$$

where

$$
A_{\sigma}^{\dagger}=\prod_{\substack{i<j, \sigma(i)>\sigma(j)}} \frac{\xi_{\sigma(i)}}{\xi_{\sigma(j)}} \cdot S_{\sigma(i) \sigma(j)}
$$

and

$$
S_{\beta \alpha}:=-\frac{\mu+\lambda \xi_{\alpha} \xi_{\beta}-\xi_{\alpha}}{\mu+\lambda \xi_{\alpha} \xi_{\beta}-\xi_{\beta}} \quad(\mu+\lambda=1)
$$

Difference between S-matrices of the ASEP and the two-sided PushASEP

For the Bethe ansatz solution

$$
\sum_{\sigma \in \mathbb{S}_{N}} A_{\sigma} \prod_{i} \xi_{\sigma(i)}^{x_{i}}
$$

- ASEP

$$
S_{\beta \alpha}:=-\frac{p+q \xi_{\alpha} \xi_{\beta}-\xi_{\beta}}{p+q \xi_{\alpha} \xi_{\beta}-\xi_{\alpha}}
$$

where $\alpha<\beta$.

- Two-sided PushASEP

$$
S_{\beta \alpha}:=-\frac{\xi_{\beta}}{\xi_{\alpha}} \cdot \frac{\mu+\lambda \xi_{\alpha} \xi_{\beta}-\xi_{\alpha}}{\mu+\lambda \xi_{\alpha} \xi_{\beta}-\xi_{\beta}}
$$

where $\alpha<\beta$.

- This difference requires new proof.

Contours of the ASEP and the two-sided PushASEP

- ASEP: \mathcal{C}_{r} sufficiently small $r<1$ and same for all variables
- Two-sided PushASEP: $\mathcal{C}_{R_{i}}$ with $1<R_{1}<\cdots<R_{N}<\frac{\mu}{\lambda}$ for variable ξ_{i}

Main part of the proof

Show the initial condition; $P_{Y}(X ; 0)=\delta_{Y}(X)$. In the sum $\sum_{\sigma \in \mathbb{S}_{N}}$

- the term for $\sigma=$ identity contributes to $\delta_{Y}(X)$
- all other terms for $\sigma \neq$ identity give 0 .
- mathematical induction

$\mathbb{P}_{Y}\left(x_{m}(t)=x\right)$

- Probability that the m th leftmost particle is at x at time t

$$
\mathbb{P}_{Y}\left(x_{m}(t)=x\right)=\sum_{\text {all possible } X} P_{Y}(X ; t)
$$

- $x_{m+1}=x+z_{1}, x_{m+2}=x+z_{1}+z_{2}, \cdots, x_{N}=x+z_{1}+\cdots z_{N-m}, z_{i} \in \mathbb{N}$
- $x_{m-1}=x-v_{1}, x_{m-2}=x-v_{1}-v_{2}, \cdots, x_{1}=x+v_{1}+\cdots v_{m-1}, v_{i} \in \mathbb{N}$

$$
\mathbb{P}_{Y}\left(x_{m}(t)=x\right)=\sum_{\text {all }}^{\infty} \sum_{v_{i}, z_{i}=1} P_{Y}(X ; t)
$$

- The sum is a multiple geometric series which can be shown to be convergent.

Main result $\mathbb{P}_{Y}\left(x_{m}(t)=x\right)(\mathrm{L} ; 2012)$

Let $S=\left\{s_{1}, \cdots, s_{k}\right\} \subset\{1, \cdots, N\}$ with $s_{i}<s_{i+1}$ and

$$
I\left(\xi ; s_{1}, \cdots, s_{k}\right)=\prod_{i<j} \frac{\xi_{s_{i}}-\xi_{s_{j}}}{\mu+\lambda \xi_{s_{i}} \xi_{s_{j}}-\xi_{s_{j}}} \cdot \frac{1}{\prod_{s \in S}\left(\xi_{s}-1\right)} \cdot\left(\prod_{s \in S} \xi_{s}-1\right)
$$

Then

$$
\begin{gathered}
\mathbb{P}_{Y}\left(x_{m}(t)=x\right) \\
=\sum_{|S| \geq m} c_{S}\left(\frac{1}{2 \pi i}\right)^{k} \int_{\mathcal{C}_{R_{s_{k}}}} \cdots \int_{\mathcal{C}_{R_{s_{1}}}} I\left(\xi ; s_{1}, \cdots, s_{k}\right) \\
\prod_{s \in S} \xi_{s}^{x-\left(y_{s}-s\right)-1} e^{\varepsilon\left(\xi_{s}\right) t} d \xi_{s_{1}} \cdots d \xi_{s_{k}} .
\end{gathered}
$$

where

$$
\varepsilon\left(\xi_{s}\right)=\frac{p}{\xi_{s}}+q \xi_{s}-1
$$

Coefficient c_{S}

Notation

$$
[N]=\frac{\mu^{N}-\lambda^{N}}{\mu-\lambda}
$$

and

$$
[N]!=[N][N-1] \cdots[1],\left[\begin{array}{l}
N \\
m
\end{array}\right]=\frac{[N]!}{[m]![N-m]!}
$$

with $[0]!=1$

$$
c_{S}=(-1)^{|S|+m}(\mu \lambda)^{m(m-1) / 2}\left[\begin{array}{c}
|S|-1 \\
|S|-m
\end{array}\right] \frac{\lambda^{\Sigma[S]-m|S|}}{\mu^{\Sigma[S]-|S|(|S|+1) / 2}}
$$

where $\Sigma[S]$ is the sum of all elements in S.

- Surprisingly, c_{S} for the two-sided PushASEP is in the same form as the c_{S} for the ASEP. (p, q instead of λ, μ)

Sketch of the proof
(1) Find $\mathbb{P}\left(x_{N}(t)=x\right)$; easy part using the same technique as the ASEP's $\mathbb{P}\left(x_{1}(t)=x\right)$
(2) Find $\mathbb{P}\left(x_{1}(t)=x\right)$; hard part
(3) Use $\mathbb{P}\left(x_{N}(t)=x\right)$ and $\mathbb{P}\left(x_{1}(t)=x\right)$ to find general $\mathbb{P}\left(x_{m}(t)=x\right)$

- Interestingly, no new identities required (ASEP's identities appeared in the PushASEP as well.)

More results to report and ongoing works

- Possible to obtain Fredholm determinant representation of $\mathbb{P}\left(x_{m}(t)=x\right)$ for step (Bernoulli) initial condition by the same technique as the Tracy-Widom's.(But slightly different operator so easy to apply the ASEP's technique.)
- Asymptotic analysis of the Fredholm determinant representation for the Tracy-Widom law (ongoing)
- Transition probability of the Bethe ansatz solvable zero range process on \mathbb{Z} (We found new identities which is a good signal in this direction of the work.)
- Ultimately, we want to generalize the ASEP's result to the Bethe ansatz solvable AZRP (ongoing).
Thank you.

