Ageing and dynamical symmetries in non-equilibrium systems without detailed balance

Malte Henkel

Groupe de Physique Statistique, Institut Jean Lamour (CNRS UMR 7198) Université de Lorraine **Nancy**, France

J.D. Noh (KIAS Seoul, Corea), M. Pleimling (Virginia Tech, U.S.A.)

5th KIAS Conference on Statistical Physics, Seoul – July 2012

MH, J.D. NOH and M. PLEIMLING, Phys. Rev. **E85**, 030102(R) (2012) MH, arXiv:1009.4139 and arXiv:1205.5901

Overview :

- 1. Ageing phenomena
- 2. Interface growth (KPZ universality class)
- 3. Critical contact process (DP universality class)
- 4. Form of the scaling functions
- 5. Logarithmic conformal & ageing invariance
- 6. Numerical experiments (KPZ and DP classes in 1D)
- 7. Conclusions

1. Ageing phenomena

known & practically used since prehistoric times (metals, glasses) systematically studied in physics since the 1970s STRUIK '78 occur in widely different systems

(structural glasses, spin glasses, polymers, simple magnets, ...)

Three defining properties of ageing :

- slow relaxation (non-exponential !)
- **0** no time-translation-invariance (TTI)
- O dynamical scaling <u>without</u> fine-tuning of parameters

Most existing studies on 'magnets' : relaxation towards equilibrium

Question: what can be learned about intrisically **irreversible** systems by studying their ageing behaviour?

- 1. observe slow relaxation after quenching PVC from melt to low T
- 2. creep curves depend on waiting time t_e and creep time t
- 3. find master curve for all $(t, t_e) \rightarrow dynamical scaling$
- \rightarrow three defining properties of **physical ageing**

master curves of distinct materials are **identical**

independent of 'details'

 \rightarrow Universality !

good for theorists ...

hint for hidden symmetry?

Struik 78

conceptual confirmation in phase-ordering : Allen-Cahn equation

common feature : growing length scale z : dynamical exponent

magnet $T < T_c$

 \rightarrow ordered cluster

magnet $T = T_c$

 \rightarrow correlated cluster

critical contact process

 \Longrightarrow cluster dilution

voter model, contact process,...

 $L(t) \sim t^{1/z}$

Two-time observables : analogy with 'magnets' time-dependent order-parameter $\phi(t, \mathbf{r})$

 $\begin{array}{ll} \text{two-time correlator} & C(t,s) := \langle \phi(t,\mathbf{r})\phi(s,\mathbf{r})\rangle - \langle \phi(t,\mathbf{r})\rangle \langle \phi(s,\mathbf{r})\rangle \\ \text{two-time response} & R(t,s) := \left.\frac{\delta \left\langle \phi(t,\mathbf{r})\rangle}{\delta h(s,\mathbf{r})}\right|_{h=0} = \left.\left\langle \phi(t,\mathbf{r})\widetilde{\phi}(s,\mathbf{r})\right\rangle \right. \end{array}$

t : observation time, s : waiting time

a) system at equilibrium : fluctuation-dissipation theorem

$$R(t-s)=rac{1}{T}rac{\partial C(t-s)}{\partial s}~,~~T$$
 : temperature

b) far from equilibrium : *C* and *R* independent ! The fluctuation-dissipation ratio (FDR) CUGLIANDOLO, KURCHAN, PARISI '94

$$X(t,s) := \frac{TR(t,s)}{\partial C(t,s)/\partial s}$$

measures the distance with respect to equilibrium :

$$X_{\rm eq} = X(t-s) = 1$$

Scaling regime : $t, s \gg \tau_{\text{micro}}$ and $t - s \gg \tau_{\text{micro}}$

$$C(t,s) = s^{-b} f_C\left(\frac{t}{s}\right) , \ R(t,s) = s^{-1-a} f_R\left(\frac{t}{s}\right)$$

<u>asymptotics</u> : $f_{C,R}(y) \sim y^{-\lambda_{C,R}/z}$ for $y \gg 1$

 λ_C : autocorrelation exponent, λ_R : autoresponse exponent, z: dynamical exponent, a, b: ageing exponents

ex. : critical particle-reaction model (contact process), initial particle density > 0 BAUMANN & GAMBASSI 07

$$\lambda_{\mathcal{C}} = \lambda_{\mathcal{R}} = d + z + rac{eta}{
u_{\perp}} \ , \ b = rac{2eta'}{
u_{\parallel}}$$

 \longrightarrow stationary-state critical exponents $\beta, \beta', \nu_{\perp}, \nu_{\parallel} = z \nu_{\perp}$

2. Interface growth

deposition (evaporation) of particles on a substrate \rightarrow height profile $h(t, \mathbf{r})$ generic situation : RSOS (restricted solid-on-solid) model KIM & KOSTERLITZ 89

 η is a gaussian white noise with $\langle \eta(t,{f r})\eta(t',{f r}')
angle=2
u\,T\delta(t-t')\delta({f r}-{f r}')$

Family-Viscek scaling on a spatial lattice of extent L^d : $\overline{h}(t) = L^{-d} \sum_i h_i(t)$

$$w^{2}(t;L) = \frac{1}{L^{d}} \sum_{j=1}^{L^{d}} \left\langle \left(h_{j}(t) - \overline{h}(t)\right)^{2} \right\rangle = L^{2\zeta} f\left(tL^{-z}\right) \sim \begin{cases} L^{2\zeta} & ; \text{ if } tL^{-z} \gg 1\\ t^{2\beta} & ; \text{ if } tL^{-z} \ll 1 \end{cases}$$

 β : growth exponent, ζ : roughness exponent, $\zeta = \beta z$

two-time correlator :

```
limit L \to \infty
```

KALLABIS & KRUG 96

$$C(t,s;\mathbf{r}) = \langle h(t,\mathbf{r})h(s,\mathbf{0})\rangle - \langle \overline{h}(t)\rangle \langle \overline{h}(s)\rangle = s^{-b}F_C\left(\frac{t}{s},\frac{\mathbf{r}}{s^{1/z}}\right)$$

with ageing exponent : $b = -2\beta$ two-time integrated response :

* sample **A** with deposition rates $p_i = p \pm \epsilon_i$, up to time *s*,

* sample **B** with $p_i = p$ up to time s; then switch to common dynamics $p_i = p$ for all times t > s

$$\chi(t,s;\mathbf{r}) = \int_0^s \mathrm{d}u \, R(t,u;\mathbf{r}) = \frac{1}{L} \sum_{j=1}^L \left\langle \frac{h_{j+r}^{(\mathbf{A})}(t;s) - h_{j+r}^{(\mathbf{B})}(t)}{\epsilon_j} \right\rangle = s^{-a} F_{\chi}\left(\frac{t}{s}, \frac{|\mathbf{r}|^z}{s}\right)$$

Effective action of the KPZ equation :

$$\mathcal{J}[\phi,\widetilde{\phi}] = \int \mathrm{d}t \mathrm{d}\mathbf{r} \,\left[\widetilde{\phi} \left(\partial_t \phi - \nu \nabla^2 \phi - \frac{\mu}{2} \left(\nabla \phi\right)^2\right) - \nu T \widetilde{\phi}^2\right]$$

Very special properties of KPZ in d = 1 spatial dimension !

Exact critical exponents $eta=1/3,\ \zeta=1/2,\ z=3/2,\ \lambda_C=1$

Kpz 86; Krech 97

related to precise symmetry properties : A) tilt-invariance (Galilei-invariance)

FORSTER, NELSON, STEPHEN 77

kept under renormalisation ! Medina, Hwa, Kardar, Zhang 89

B) time-reversal invariance

Lvov, Lebedev, Paton, Procaccia 93 Frey, Täuber, Hwa 96 A) tilt-invariance (holds for any dimension d)

$$t \mapsto t \ , \ \mathbf{r} \mapsto \mathbf{r} - \boldsymbol{\epsilon}t \ , \ h(t, \mathbf{r}) \ \mapsto \ h(t, \mathbf{r} - \boldsymbol{\epsilon}t) - \frac{1}{\mu} \boldsymbol{\epsilon} \cdot \mathbf{r} + \frac{t}{2\mu} \boldsymbol{\epsilon}^2$$

 $\eta(t, \mathbf{r}) \ \mapsto \ \eta(t, \mathbf{r} - \boldsymbol{\epsilon}t)$

combination with dynamical scaling gives the exponent relation

$$\zeta + z = 2$$

this is preserved in the loop expansion !

N.B. in 1*D*, gaussian stationary distribution fixes $\zeta = \frac{1}{2}$.

B) Special KPZ symmetry in 1D : let $v = \frac{\partial \phi}{\partial r}$, $\tilde{\phi} = \frac{\partial}{\partial r} \left(\tilde{p} + \frac{v}{2T} \right)$

$$\mathcal{J} = \int \mathrm{d}t \mathrm{d}r \, \left[\widetilde{\rho} \partial_t v - \frac{\nu}{4T} \left(\partial_r v \right)^2 - \frac{\mu}{2} v^2 \partial_r \widetilde{\rho} + \nu T \left(\partial_r \widetilde{\rho} \right)^2 \right]$$

is invariant under time-reversal

$$t\mapsto -t$$
 , $v(t,r)\mapsto -v(-t,r)$, $\widetilde{p}\mapsto +\widetilde{p}(-t,r)$

 \Rightarrow fluctuation-dissipation relation for $t \gg s$

$$TR(t,s;r) = -\partial_r^2 C(t,s;r)$$

distinct from the equilibrium FDT $TR(t-s) = \partial_s C(t-s)$

Combination with ageing scaling, gives the ageing exponents :

$$\lambda_R = \lambda_C = 1 \qquad \text{and} \qquad 1 + a = b + \frac{2}{z}$$

Kallabis, Krug 96

MH, NOH, PLEIMLING '12

1D relaxation dynamics, starting from an initially flat interface

confirm expected exponents b = -2/3, $\lambda_C/z = 2/3$ **N.B.** : this confirmation is out of the stationary state

KALLABIS & KRUG 96; KRECH 97; BUSTINGORRY et al. 07-10; CHOU & PLEIMLING 10; D'AQUILA & TÄUBER 11

relaxation of the integrated response, 1D

exponents a = -1/3, $\lambda_R/z = 2/3$, as expected from FDR

N.B. : numerical tests for 2 models in KPZ class

Simple ageing is also seen in space-time observables

 $\begin{array}{l} \text{correlator } C(t,s;r) = s^{2/3} F_C\left(\frac{t}{s},\frac{r^{3/2}}{s}\right) \\ \text{integrated response } \chi(t,s;r) = s^{1/3} F_\chi\left(\frac{t}{s},\frac{r^{3/2}}{s}\right) \end{array} \right\} \quad \text{confirm } z = 3/2 \\ \end{array}$

Values of some growth and ageing exponents in 1D

model	Ζ	а	b	$\lambda_R = \lambda_C$	β	ζ
KPZ	3/2	-1/3	-2/3	1	1/3	1/2
ехр			$pprox -2/3^{\dagger}$	$pprox 1^{\dagger}$	0.336(11)	0.50(5)
EW	2	-1/2	-1/2	1	1/4	1/2
MH	4	-3/4	-3/4	1	3/8	3/2

Takeuchi, Sano, Sasamoto, Spohn 10/11/12

scaling holds only for flat interface

Two-time space-time responses and correlators consistent with simple ageing for 1D KPZ

Similar results known for EW and MH universality classes

ROETHLEIN, BAUMANN, PLEIMLING 06

3. Critical contact process $A \xrightarrow{p} 2A, A \xrightarrow{1} \emptyset$ ageing and scaling for C(t, s) : critical contact process

Effective action at criticality

$$\mathcal{J}[\widetilde{\phi},\phi] = \int \mathrm{d}t \mathrm{d}\mathbf{r} \, \left[\widetilde{\phi} \left(D\partial_t \phi - \boldsymbol{\nabla}^2 \phi\right) - \kappa \widetilde{\phi} \left(\widetilde{\phi} - \phi\right) \phi\right]$$

rapidity-reversal symmetry : $\mathcal J$ is invariant under Grassberger 79, Janssen 81

$$t\mapsto -t \;\;,\;\; \phi(t,{f r})\mapsto -\widetilde{\phi}(-t,{f r}) \;\;,\;\; \widetilde{\phi}(t,{f r})\mapsto -\phi(-t,{f r})$$

 $\Rightarrow \phi$ and $\widetilde{\phi}$ must have equal scaling dimensions $\Rightarrow \boxed{1 + a = b}$

new form of FDR, $\frac{1}{\Xi}$ measures distance from stationarity Ensitient BAUMANN & GAMBASSI 07

$$\Xi(t,s) := \frac{R(t,s)}{C(t,s)} = \frac{f_R(t/s)}{f_C(t/s)} , \quad \Xi_{\infty} := \lim_{s \to \infty} \left(\lim_{t \to \infty} \Xi(t,s) \right)$$

for $d = 4 - \varepsilon$ (one-loop calculation) & 1D num. TMRG estimate B & G 07 ENSS et al. 04

$$\Xi_{\infty} = 2\left[1 - \varepsilon \left(\frac{119}{480} - \frac{\pi^2}{120}\right)\right] + \mathcal{O}(\varepsilon^2) \quad , \quad \Xi_{\infty} = 1.15(5)$$

<u>NB</u>: 1 + a = b invalid in other non-equilibrium universality classes

numerical values of some non-equilibrium exponents

contact process (CP) $A \rightarrow 2A, A \rightarrow \emptyset$, parity-conserved model (PC) $A \leftrightarrow 3A, 2A \rightarrow \emptyset$, diffusion-coagulation (DC) $2A \rightarrow A$

	d	а	b	λ_C/z	λ_R/z		
CP	1	-0.68(5)	0.32(5)	1.85(10)	1.85(10)	TMRG	[1]
		-0.57(10)	0.3189	1.9(1)	1.9(1)	MC	[2]
		-0.6810			1.76(5)	MC	[3]
		-0.6810	0.3189	1.7921	1.7921	scal	[5]
	2	0.3(1)	0.901(2)	2.8(3)	2.75(10)	MC	[2]
		-0.198(2)	0.901(2)	2.58(2)	2.58(2)	scal	[5]
			0.9(1)	2.5(1)		exp	[6]
	> 4	d/2 - 1	d/2		d/2 + 2	MF	[2]
PC	1	-0.430(4)	0.570(4)	1.9(1)	1.9(2)	MC	[4]
		-0.430(4)	0.570(4)	1.86(1)	1.86(1)	scal	
DC	1	-1/2	1	2	2	exact	[7]

[1] ENSS et. al. 04; [2] RAMASCO et. al. 04; [3] HINRICHSEN 06; [4] ÓDOR 06;

[5] BAUMANN & GAMBASSI 07; [6] TAKEUCHI et. al. 09; [7] DURANG, FORTIN, MH 11

4. Form of the scaling functions

Question : ? Are there model-independent results on the form of universal scaling functions ?

'Natural' starting point : try to draw analogies with conformal invariance at equilibrium

* Equilibrium critical phenomena : scale-invariance
 * For sufficiently local interactions : extend to conformal invariance

space-dependent re-scaling (angles conserved) $\mathbf{r} \mapsto \mathbf{r}/b(\mathbf{r})$

BATEMAN & CUNNINGHAM 1909/10, POLYAKOV 70

In **two** dimensions : ∞ many conformal transformations ($w \mapsto \beta(w)$ complex analytic) \Rightarrow exact predictions for critical exponents, correlators, ... BPZ 84

Hidden assumptions :

1) extension scale-invariance \rightarrow conformal invariance ? formally : energy-momentum tensor symmetric & traceless CALLAN, COLEMAN, JACKIW '70

 but counterexamples :

 lattice animals
 hydrodynamics
 renormalised FT
 Fortin, GRINSTEIN, STERGIOU 12

 2) choice of so-called 'primary' scaling operators not all physical models are unitary minimal CFTs \longrightarrow SLE 3) how do primary operators transform? usual form $\phi'(w) = \beta'(w)^{\Delta} \phi(\beta(w))$ **alternative :** logarithmic partner ψ GURARIE 93, KHORRAMI et al. 97,... $\psi'(w) = \beta'(w)^{\Delta} \left[\psi(\beta(w)) + \ln \beta'(w) \cdot \phi(\beta(w)) \right]$

Logarithmic conformal invariance has been found in, e.g.

- critical 2D percolation CARDY 92, WATTS 96, MATHIEU & RIDOUT 07/08
- disordered systems CAUX et al. 96
- sand-pile models

RUELLE et al. 08-10

What about time-dependent critical phenomena ?

Cardy 85

Characterised by dynamical exponent $z : t \mapsto tb^{-z}$, $\mathbf{r} \mapsto \mathbf{r}b^{-1}$

Can one extend to **local** dynamical scaling, with $z \neq 1$? If z = 2, the Schrödinger group is an example : JACOBI 1842, LIE 1881

$$t \mapsto \frac{lpha t + eta}{\gamma t + \delta} \ , \ \mathbf{r} \mapsto \frac{\mathcal{D}\mathbf{r} + \mathbf{v}t + \mathbf{a}}{\gamma t + \delta} \ ; \ \ \alpha \delta - \beta \gamma = 1$$

⇒ study **ageing** phenomena as paradigmatic example <u>essential</u> : (i) **absence** of TTI & (ii) **Galilei**-invariance

Transformation $t\mapsto t'$ with eta(0)=0 and $\doteta(t')\geq 0$ and

$$t = \beta(t') , \quad \phi(t) = \left(\frac{\mathrm{d}\beta(t')}{\mathrm{d}t'}\right)^{-\varkappa/z} \left(\frac{\mathrm{d}\ln\beta(t')}{\mathrm{d}t'}\right)^{-2\xi/z} \phi'(t')$$

out of equilibrium, have 2 distinct scaling dimensions, |x| and ξ .

mean-field for magnets : expect
$$\begin{cases} \xi = 0 \text{ in ordered phase } T < T_c \\ \xi \neq 0 \text{ at criticality } T = T_c \end{cases}$$

<u>NB</u>: if TTI (equilibrium criticality), then $\xi = 0$.

co-variance of response functions under local scaling !

 \Rightarrow set of linear differential equations for R(t,s)

most simple case!

$$R(t,s) = \left\langle \phi(t)\widetilde{\phi}(s) \right\rangle = s^{-1-a} f_R\left(\frac{t}{s}\right)$$
$$f_R(y) = f_0 y^{1+a'-\lambda_R/z} (y-1)^{-1-a'} \underbrace{\Theta(y-1)}_{\text{causality}}$$

$$a = \frac{1}{z} \left(x + \widetilde{x} \right) - 1 , \ a' - a = \frac{2}{z} \left(\xi + \widetilde{\xi} \right) , \ \frac{\lambda_R}{z} = x + \xi$$

magnetic example : 1D Glauber-Ising model at $T = T_c = 0$:

$$a=0\;,\;a'-a=-rac{1}{2}\;,\;\lambda_R=1\;,\;z=2$$
 Picone, MH 04 MH, ENSS, Pleimling 06

<u>Particle models</u> : comparison of R(t, s) with LSI-prediction :

? is this good general agreement already conclusive ?

<u>Observation</u>: the hidden assumption a = a', uncritically taken over from equilibrium, is often **invalid** out of equilibrium. Observables **cannot** always be identified with scaling operators.

5. Logarithmic conformal & ageing invariance
generalise conformal invariance
$$\rightarrow \text{doubletts } \Psi = \begin{pmatrix} \psi \\ \phi \end{pmatrix}$$
 ROZANSKY & SALEUR 92
GURARIE 93
generators : $\ell_n = -w^{n+1}\partial_w - (n+1)w^n \begin{pmatrix} \Delta & 1 \\ 0 & \Delta \end{pmatrix}$
two-point functions : have $\Delta_1 = \Delta_2$ GURARIE 93, RAHIMI TABAR et al. 97...
 $F = \langle \phi_1(w_1)\phi_2(w_2) \rangle = 0$
 $G = \langle \phi_1(w_1)\psi_2(w_2) \rangle = G_0 |w|^{-2\Delta_1}$
 $H = \langle \psi_1(w_1)\psi_2(w_2) \rangle = (H_0 - 2G_0 \ln |w|) |w|^{-2\Delta_1}$
 $= w_2^{-2\Delta_1}(H_0 - 2G_0 \ln |y-1| - 2G_0 \ln |w_2|) |y-1|^{-2\Delta_1}$

with $w = w_1 - w_2$ and $y = w_1/w_2$.

Simultaneous log corrections to scaling and modified scaling function

Logarithmic conformal invariance has been found in, e.g.

- critical 2D percolation CARDY 92, WATTS 96, MATHIEU & RIDOUT 07/08
- disordered systems
- sand-pile models

CAUX et al. 96

RUELLE et al. 08-10

construct **logarithmic ageing-invariance** by the formal changes (generic case; x' = 0 or x' = 1):

$$x \mapsto \hat{x} = \begin{pmatrix} x & x' \\ 0 & x \end{pmatrix}, \ \xi \mapsto \hat{\xi} = \begin{pmatrix} \xi & \xi' \\ \mathbf{0} & \xi \end{pmatrix}$$

(must show : both dimension matrices $\hat{x}, \hat{\xi}$ are simultaneously Jordan !) we find the co-variant two-point functions (with y = t/s) :

$$\begin{split} \left\langle \phi(t)\widetilde{\phi}(s) \right\rangle &= s^{-(x+\widetilde{x})/2} f(y) \\ \left\langle \phi(t)\widetilde{\psi}(s) \right\rangle &= s^{-(x+\widetilde{x})/2} \left(g_{12}(y) + \ln s \cdot \gamma_{12}(y) \right) \\ \left\langle \psi(t)\widetilde{\phi}(s) \right\rangle &= s^{-(x+\widetilde{x})/2} \left(g_{21}(y) + \ln s \cdot \gamma_{21}(y) \right) \\ \left\langle \psi(t)\widetilde{\psi}(s) \right\rangle &= s^{-(x+\widetilde{x})/2} \left(h_0(y) + \ln s \cdot h_1(y) + \ln^2 s \cdot h_2(y) \right) \end{split}$$

all scaling functions explicitly known

Question : interesting models described by logarithmic LSI?

6. Numerical experiments

- (A) Kardar-Parisi-Zhang (**KPZ**)
- (B) directed percolation (DP)
- (C) majority voter/Glauber models

simple ageing of the correlators and responses, especially

$$\begin{array}{rcl} \mathcal{C}(t,s) & = & s^{-b}f_{\mathcal{C}}\left(\frac{t}{s}\right) &, & \mathcal{R}(t,s) = & s^{-1-a}f_{\mathcal{R}}\left(\frac{t}{s}\right) \\ f_{\mathcal{C}}(y) & \sim & y^{-\lambda_{\mathcal{C}}/z} &, & f_{\mathcal{R}}(y) \sim y^{-\lambda_{\mathcal{R}}/z} & y \gg 1 \end{array}$$

values of the non-equilibrium exponents & scaling relations

KPZ in 1D:
$$\lambda_C = \lambda_R = 1$$
, $1 + a = b + \frac{2}{z}$, $b = -2\beta = -\frac{2}{3}$, $z = \frac{3}{2}$
DP: $\lambda_C = \lambda_R = d + z + \frac{\beta}{\nu_{\perp}}$, $1 + a = b = \frac{2\beta}{\nu_{\parallel}}$

what can be said on the form of the scaling function of the auto-response?

N.B. : Galilei-invariance for KPZ is kept under renormalisation, unusual form

(A) <u>assumption</u>: $R(t,s) = \left\langle \psi(t)\widetilde{\psi}(s) \right\rangle$ 1D KPZ equation/RSOS model good collapse \Rightarrow **no** logarithmic corrections $\Rightarrow \boxed{x' = \widetilde{x}' = 0}$ **no** logarithmic factors for $y \gg 1 \Rightarrow \boxed{\xi' = 0}$ \Rightarrow only $\widetilde{\xi'} = 1$ remains

$$f_{R}(y) = y^{-\lambda_{R}/z} \left(1 - \frac{1}{y}\right)^{-1-a'} \left[h_{0} - g_{0} \ln\left(1 - \frac{1}{y}\right) - \frac{1}{2}f_{0} \ln^{2}\left(1 - \frac{1}{y}\right)\right]$$

use specific values of 1*D* KPZ class $\frac{\lambda_R}{z} - a = 1$ find integrated autoresponse $\chi(t, s) = \int_0^s du R(t, u) = s^{1/3} f_{\chi}(t/s)$

$$f_{\chi}(y) = y^{1/3} \left\{ A_0 \left[1 - \left(1 - \frac{1}{y} \right)^{-a'} \right] + \left(1 - \frac{1}{y} \right)^{-a'} \left[A_1 \ln \left(1 - \frac{1}{y} \right) + A_2 \ln^2 \left(1 - \frac{1}{y} \right) \right] \right\}$$

with free parameters A_0, A_1, A_2 and a'

$(\tau \tau) = -$			•	-
$\langle \phi \widetilde{\psi} angle - L^1 LSI$	-0.500	0.663	$-6\cdot10^{-4}$	0
$\langle \psi \widetilde{\psi} angle - L^2 LSI$	-0.8206	0.7187	0.2424	-0.09087

logarithmic LSI fits data at least down to $y \simeq 1.01$, with $a' - a \approx -0.4873$ (can we make a conjecture?)

(B) assumption:
$$R(t,s) = \left\langle \psi(t)\widetilde{\psi}(s) \right\rangle$$
 1D critical contact process
good collapse \Rightarrow **no** logarithmic corrections $\Rightarrow \boxed{x' = \widetilde{x}' = 0}$
 $h_R(y) = \left(1 - \frac{1}{y}\right)^{a-a'} \left[h_0 - g_{12,0}\widetilde{\xi}' \ln(1 - 1/y) - g_{21,0}\xi' \ln(y - 1) - \frac{1}{2}f_0\widetilde{\xi}'^2 \ln^2(1 - 1/y) + \frac{1}{2}f_0\xi'^2 \ln^2(y - 1)\right]$

find empirically : very small amplitude of ln²-terms

$$\Rightarrow f_0 = 0$$

require both $\xi \neq 0$, $\tilde{\xi}' \neq 0$

BUT : logarithmic factor for $y \gg 1$?

logar. LSI fit data, at least down to $y \simeq 1.002$; with $a' - a \simeq -0.002$.

(C) <u>assumption</u>: $R(t,s) = \left\langle \psi(t)\widetilde{\psi}(s) \right\rangle$ 2D majority voter/Glauber model (triangular lattice) good collapse \Rightarrow **no** logarithmic corrections $\Rightarrow \boxed{x' = \widetilde{x}' = 0}$

$$h_R(y) = \left(1 - \frac{1}{y}\right)^{a-a'} \left[h_0 - g_{12,0}\ln(1 - 1/y) - \frac{1}{2}f_0\ln^2(1 - 1/y)\right]$$

no logarithmic terms for $y \gg 1$ $\Rightarrow \xi' = 0$

can normalise $\widetilde{\xi'}=1$

F. Sastre (2012)

logar. LSI fit data, at least down to $y \simeq 1.005$.

7. Conclusions

- physical ageing occurs naturally in many irreversible systems relaxing towards non-equilibrium stationary states considered here : absorbing phase transitions & surface growth
- scaling phenomenology analogous to simple magnets
- **but** finer differences in relationships between non-equilibrium exponents
- a major difference w/ equilibrium : intrinsic absence of time-translation-invariance ⇒ 2 scaling dimensions
- shape of scaling functions :

logarithmic local scale-invariance?

performed numerical experiments on auto-response function : (i) 1D KPZ equation (ii) 1D critical directed percolation

(iii) 2D majority voter/Glauber models

• major open problem : Galilei-invariance !

studies of the ageing properties, via two-time observables, might become a **new tool**, also for the analysis of complex systems!

ISBN : 978-1-4020-8764-6 (vol 1.) & 978-90-481-2868-6 (vol. 2)

study more closely the limit $t, s \to \infty$, y = t/s fixed; let $y \to 1$

$$R(t,s) = s^{-1-a} f_R\left(\frac{t}{s}\right) \ , \ h_R(y) := f_R(y) y^{\lambda_R/z} (1-1/y)^{1+a}$$

observe good collapse of data, when y = t/s large enough LSI with a = a' predicts : $h_R(y) = f_0 = \text{cste.}$ \Rightarrow reproduces TMRG data for $y \gtrsim 3 - 4$

$$h_R(y) := f_R(y) y^{\lambda_R/z} (1 - 1/y)^{1+a} \stackrel{\text{LSI}}{=} f_0 (1 - 1/y)^{a-a'}$$

with the choice a' - a = 0.26, LSI works well for $y \gtrsim 1.1$ but systematic deviations, still inside the ageing scaling region, for smaller values of y = t/s (down to $y \simeq 1.001$)!

Question : improve the prediction of local scale-invariance (LSI)?

C) assumption:
$$R(t,s) = \left\langle \psi(t)\widetilde{\psi}(s) \right\rangle$$
 2D majority voter/Glauber model
(triangular lattice)
good collapse \Rightarrow **no** logarithmic corrections $\Rightarrow \boxed{x' = \widetilde{x}' = 0}$
 $h_R(y) = \left(1 - \frac{1}{y}\right)^{a-a'} \left[h_0 - g_{12,0}\ln(1 - 1/y) - \frac{1}{2}f_0\ln^2(1 - 1/y)\right]$

no logarithmic terms for $y \gg 1$ $\Rightarrow \xi' = 0$

can normalise $\widetilde{\xi'}=1$

F. Sastre (2012)

logar. LSI fit data, at least down to $y \simeq 1.005$.