On the universality of fixed-energy sandpiles

Haye Hinrichsen University of Würzburg Germany

5th KIAS Conference on Statistical Physics July 4-8, 2012 KIAS – Seoul - Korea

Collaboration:

first conjectures with A. Hipke presented in Haifa in 2009

Extended study with

Mahashweta Basu Urna Basu Sourish Bondyopadhyay Pradeep Mohanty

SAHA Institute, Kolkata

ArXiv 1206.3121, to appear in PRL

Outline:

- 1. SOC and fixed-energy sandpiles.
- 2. The background field
- 3. Natural initial states
- 4. New method to identify DP
- 5. Conclusions

P'KINER - WIESEMPELD

P'KINER - WIESEMPELD

Bak-Tang-Wiesenfeld model

Phys. Rev. Lett. 59, 381 - 384 (1987)

1. Slow driving

2. Avalanches

If $h(x, y) \ge 4$ then $h(x, y) \rightarrow h(x, y) - 4$ $h(x+1, y) \rightarrow h(x+1, y) + 1$ $h(x-1, y) \rightarrow h(x-1, y) + 1$ $h(x, y+1) \rightarrow h(x, y+1) + 1$ $h(x, y-1) \rightarrow h(x, y-1) + 1$

3. Dissipation at the boundaries

$$h(x, y) \rightarrow h(x, y) + 1$$

Cluster sizes

Cluster lifetimes

FIG. 2. Distribution of cluster sizes at criticality in two and three dimensions, computed dynamically as described in the text. (a) 50×50 array, averaged over 200 samples; (b) $20 \times 20 \times 20$ array, averaged over 200 samples. The data have been coarse grained.

FIG. 3. Distribution of lifetimes corresponding to Fig. 2. (a) For the 50×50 array, the slope $a \approx 0.42$, yielding a "1/f" noise spectrum $f^{-1.58}$; (b) 20×20×20 array, $a \approx 0.90$, yielding an $f^{-1.1}$ spectrum

Wolfgang Kinzel Ido Kanter

게임 준비하기

- 1.하늘색과 청색 캡을 기둥 위에 교대로 꽂고, 게임판 바닥에는 노란색 캡을 꽂습니다.
- 2.청색 캡의 기둥에는 디스크 1개를, 하늘색 캡의 기둥에는 디스크 2개를 꽂습니다.

게임 시작하기

1.각 게임자에게 **7개**씩 디스크를 나누어 주고 나머지는 주머니에 넣어 뱅크로 둡니다. 2.자기 차례가 되면 **3개**의 디스크를 1~3개의 기둥에 꽂습니다.

(만약 디스크가 3개 이하로 남아 있다면 남은 개수 만큼 사용합니다.) 3.한 기둥에 디스크가 4개 꽂히면, 접한 4개의 다른 색 기둥에 디스크를 한 개씩 나누어 꽂습니다. (디스크 4개가 한 기둥에 꽂힌 것을 포섬 foursomes 이라고 한다.)

〈모서리〉

<가장자리>

7. 게임판의 가장자리나 모서리에 4개의 기둥이 만들어지면

(쌓여진 5개 중에서 남은 1개와 뱅크에서 받은 것 1개)

6. 4개의 디스크를 나누어 꽂다가 5개가 꽂힐 경우, 디스크 2개를 가져갑니다.

5.또 다른 색 기둥에 4개의 디스크가 채워지면, 같은 방법으로 4개의 디스크를 나눠 꽂습니다.

디스크를 가져옵니다.

4.게임자가 4개의 디스크를 인접한 4개의 다른 색 기둥에 나누어 꽂을 때마다 뱅크에서 1개의

S. S. Manna

1D:

Manna sandpile model

S. S. Manna, J. Phys. A 24, L363 (1991)

...like BTW, but with a probabilistic update

- Sites with $N > N_c$ particles are active.
- Update all active sites simultaneously.
- Move each particle to a randomly selected nearest neighbor

 $N_c=2$

Universality hypothesis

Self-organizing critical systems with

- a single degree of freedom per site,
- local interactions,
- update rules with "enough randomness",
- no unconventional symmetries

belong to the same universality class, called Manna class.

Manna model

Contact process

1. Slow driving

2. Sudden avalanches

3. Dissipation at the boundaries

Conserved spreading agent

Avalanches controlled by the average density

Conservation law broken by slow driving and dissipation at the boundaries

Non-conserved spreading agent

Spreading controlled by the infection rate

Conserved Manna model

Contact process (DP)

2. Sudden avalanches

3. Dissipation at the koundaries

Conserved spreading agent

Transition controlled by the average density

Non-conserved spreading agent

Transition controlled by the infection rate

Concept of "Fixed-Energy Sandpiles"

Vespignani et al, PRL 81, 5676 (1998) & Phys. Rev. E 57, 6345

- Use the same update rules for toppling
- No driving
- No dissipation at the boundaries (infinite system or periodic b.c.)
- Use conserved density as control parameter

Concept of "Fixed-Energy Sandpiles"

The most important relations between SOC and ordinary exponents

Exponent for avalanche sizes:

$$\tau = \frac{1+\theta+2\delta}{1+\theta+\delta} = \frac{d+z}{d+z-\beta/\nu}$$

Exponent for avalanche times: $\tau_A = 1 + \delta = 1 + \beta / v_{\parallel}$

Munoz, Dickman, Vespignani and Zapperi, Phys. Rev. E 59, 6175 (1999)

Conserved Manna Model (CMM)

- Prepare an initial state with a certain density Φ

• Apply Manna updates with periodic boundary conditions

Many absorbing states

Single absorbing state

Textbooks: Exponents in 1D

Kockelkoren and Chate, ArXiv cond-mat 0306039 (2003) Ramasco, Munoz, and da Silva Santos, PRE 69, 045105R (2004) R. Dickman, PRE 73, 036131 (2006)

Exponent	Conserved Manna (Lübeck)		Directed Percolation
β	0.38(5)	0.289(12) <mark>0.29(2)</mark> 0.28(2)	0.276
$ u_{\parallel}$	2.4(1)	1.95(15)	1.733
$ u_{\perp}$	1.76(9)	1.35(10) 1.31(15)	1.096
α	0.14(2)	0.140(5) 0.14(1)	0.159
δ	0.17(2)		0.159
θ	0.35(3)		0.313
Ζ	1.39(4)	1.50(4) 1.55(3) 1.47(4)	1.580

Conserved Manna class – what is disturbing:

- same mean field as for DP
- violation of scaling: $\alpha \neq \delta$ but $\beta = \beta'$
- split of universality in the CTTP
- undershooting

2. The background field

Consider activity and background separately:

DP Langevin equation:

Conserved Manna Langevin equations:

$$\dot{\rho}(\vec{x},t) = \phi(\vec{x},t)\rho(\vec{x},t) - b\rho^2(\vec{x},t) + D\nabla^2\rho(\vec{x},t) + \eta(\vec{x},t)$$

$$\dot{\phi}(\vec{x},t) = D'\nabla^2\rho(\vec{x},t)$$

A. Vespignani, et al., Phys. Rev. Lett. 81, 5676 (1998). Phys. Rev. E 62,4564 (2000).

$$\dot{\rho}(\vec{x},t) = \phi(\vec{x},t)\rho(\vec{x},t) - b\rho^{2}(\vec{x},t) + D\nabla^{2}\rho(\vec{x},t) + \eta(\vec{x},t)$$

$$\dot{\phi}(\vec{x},t) = D'\nabla^{2}\rho(\vec{x},t)$$

$$\langle \eta(\vec{x},t)\eta(\vec{x}',t')\rangle = \Gamma\rho(\vec{x},t)\delta^{d}(\vec{x}-\vec{x}')\delta(t-t')$$

The undershooting is caused by the randomness of the background field.

position j

Roughness of the background

Cumulative sum of particles minus expected average

Width of S(j) at criticality.

Observation:

The background field provides a slowly evolving quenched randomness.

The process itself has the tendency to homogenize the background field

This works most efficiently at criticality.

<u>Question:</u>

Does it go back to DP?

3. Natural initial states

Natural states are configurations where the background is already homogenized by the process itself.

'Natural' homogeneous initial states

Distribute particles randomly until critical density is reached

Repeat update until system becomes stationary or absorbing

can take long time.

Reactivate by diffusion (one Monte-Carlo sweep)

Usual temporal evolution

(A) Random absorbing state

red = vacant sites

••••••

(B) Deterministic absorbing state

(C) Natural absorbing state

Natural initial states cure undershooting

→ slightly different critical density

Static exponent **B**

$$\rho_{\rm stat} \sim (\phi - \phi_c)^{\beta}$$

Even with natural initial states, there are unusual corrections to scaling.

Improved estimates for the critical exponents

Exponent	Conserved Manna (old)	Conserved Manna (new)	Directed Percolation
β	0.38(5)	<0.31 -> 0.28	0.276486
$ u_{\parallel}$	2.4(1)	1.75(5)	1.733847
$ u_{\perp}$	1.76(6)	1.10(1)	1.096854
α	0.14(2)	0.159(3)	0.159464
δ	0.17(2)	0.17(2)	0.159464
θ	0.35(3)	0.34(2)	0.313686
Z	1.39(4)	1.51(5)	1.58074

Finite-size scaling function

$$\rho(t,L)=t^{-\alpha}R(t/L^{z})$$

4. New method to identify DP

Probability $P_c(b,t)$ to find the coarse-grained bit pattern c.

The quantities $S_c = \lim_{b \to \infty} S_c(b)$ are universal.

U. Basu and H.H., JSTAT P11023 (2011)

The quantities $S_c = \lim_{b \to \infty} S_c(b)$ are universal !

Apply RG method to conserved Manna

Boundary effects

Bonachela and Munoz, Physica A 384, 89 (2005)

A. Hipke and HH, JSTAT P07021 (2009)

Conclusions:

- Conserved Manna sandpiles in 1D.
- Natural initial conditions cure overshooting.
- With natural intial conditions we get a different critical point, questioning previous critical exponents.
- Homogeneous simulations in 1D in perfect agreement with DP.
- RG flow in a block RG scheme confirms DP.
- Seed simulations still unclear.