NSPCS2012 July 3-6, 2012

Opinion formation in a population with stubborn neutrals and zealots

Hyunsuk Hong Chonbuk National University

``Encouraging moderation: Clues from a simple model of ideological conflict", Seth A. Marvel (UOM), Hyunsuk Hong (CBNU), Anna Papush (Cornell), Steven H. Strogatz (Cornell)

Outline

- Introduction
- A simple model of opinion formation
- Effects by committed members and stubborn neutrals on the process of opinion consensus
- Mean-field analysis and numerical simulations
- Other generalized models
- Summary (ongoing/future study)

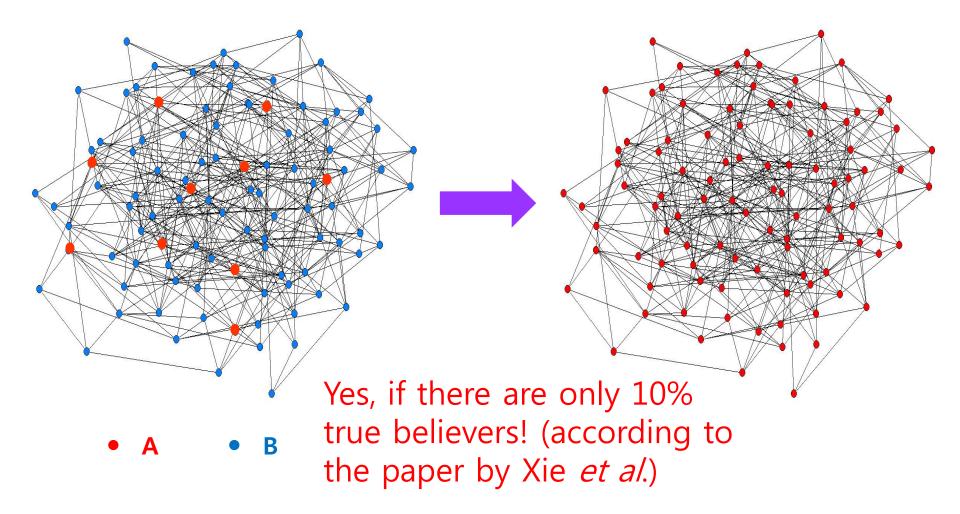
It's majority rule — even if only 10% believe it

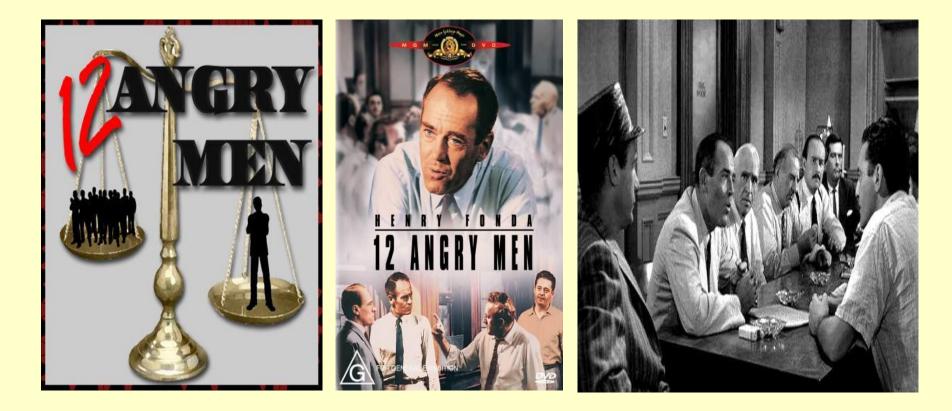
By Emily Sohn, msnbc.com (8/4/2011)

http://www.msnbc.msn.com/id/44024703/ns/technology_and_science-science/t/its-majority-rule-even-if-only-believe-it/

Can a minority group of committed members reverse the majority opinion?

J. Xie, S. Sreenivasan, G. Korniss, W. Zhang, C. Lim, and B.K. Szymanski, Phys. Rev. E **84**, 011130 (2011).





Eleven jurors vote guilty, and only one juror votes not guilty.

All twelve jurors vote not guilty.

Questions/Motivations

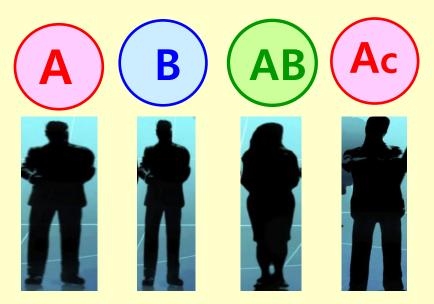
Can we make a simple model to show such an interesting behavior?

> Do we have a sort of transition in the model?

Personal characteristics of the population may affect the tipping point. So, what happens if we consider those things?

- > Can we make **lower** the tipping point?
- > Does this transition occur in the real social systems?

Model of Opinion Formation



A : subpopulation that hold extreme opinion A

B : subpopulation that hold the <u>opposing</u> opinion B

AB : those that do not hold either A or B, we call these ``neutrals/moderates".

Ac : those that hold A and are immune to the influence of others, i.e., <u>A zealots</u>.

List of all possible interactions

Speaker	Listener (pre-interaction)	Listener (post-interaction)	Probability
A, Ac	В	AB	1
	AB	AB	S
		Α	1-s
В	Α	AB	1
	AB	AB	S
		В	1-s

s: ``stubbornness" of the neutrals

Mean-Field Analysis

$$n_A = N_A / N$$

 $n_B = N_B / N$
 $n_{AB} = N_{AB} / N$
 $= N_{AB} / N$

 $p = N_{A_c} / N$: fraction of the population corresponding to the <u>committed</u> A, i.e., Ac

Mean-Field Analysis $n_A = N_A / N$ $n_B = N_B / N$ $n_{AB} = N_{AB} / N$ $n_{AB} = N_{AB} / N$ $M_{AB} = N_{AB} / N$ $M_{A} = N_{A} / N$ M_{A}

fraction of the total population that hold the opinion A : $n_A + p$ uncommitted A Mean-Field Analysis $n_A = N_A / N$ $n_B = N_B / N$ $n_{AB} = N_{AB} / N$: fractions of the total population corresponding to the <u>uncommitted</u> A, B, and AB, respectively.

 $p = N_{A_c} / N$: fraction of the population corresponding to the committed **A**, i.e., **Ac**

Mean-Field Analysis

$$n_{A} = N_{A} / N$$

$$n_{B} = N_{B} / N$$

$$n_{AB} = N_{AB} / N$$

$$n_{AB} = N_{AB} / N$$

: fractions of the total population
corresponding to the uncommitted A, B,
and AB, respectively.

 $p = N_{A_c} / N$: fraction of the population corresponding to the <u>committed</u> A, i.e., Ac

$$\frac{dn_A}{dt} = (1-s)(p+n_A)n_{AB} - n_A n_B,$$
$$\frac{dn_B}{dt} = (1-s)n_B n_{AB} - (p+n_A)n_B,$$

where
$$n_{AB} = 1 - p - n_A - n_B$$

(1)

Mean-Field Analysis

$$n_{A} = N_{A} / N$$

$$n_{B} = N_{B} / N$$

$$n_{AB} = N_{AB} / N$$

$$respectively.$$

$$respectively.$$

 $p = N_{A_c} / N$: fraction of the population corresponding to the <u>committed</u> A, i.e., Ac

$$\frac{dn_A}{dt} = (1 - s)(p + n_A)n_{AB} - n_A n_B,$$
$$\frac{dn_B}{dt} = (1 - s)n_B n_{AB} - (p + n_A)n_B,$$

where
$$n_{AB} = 1 - p - n_A - n_B$$

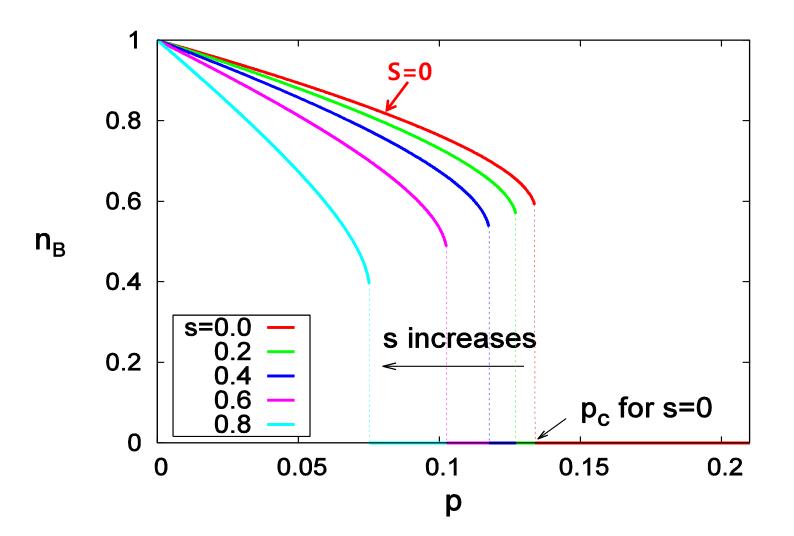
(1)

Fixed points
$$(\dot{n}_A = 0, \dot{n}_B = 0)$$
 at:
(i) $(n_A, n_B) = (-p, 0)$
(ii) $(n_A, n_B) = (1-p, 0)$
(iii) & (iv) :

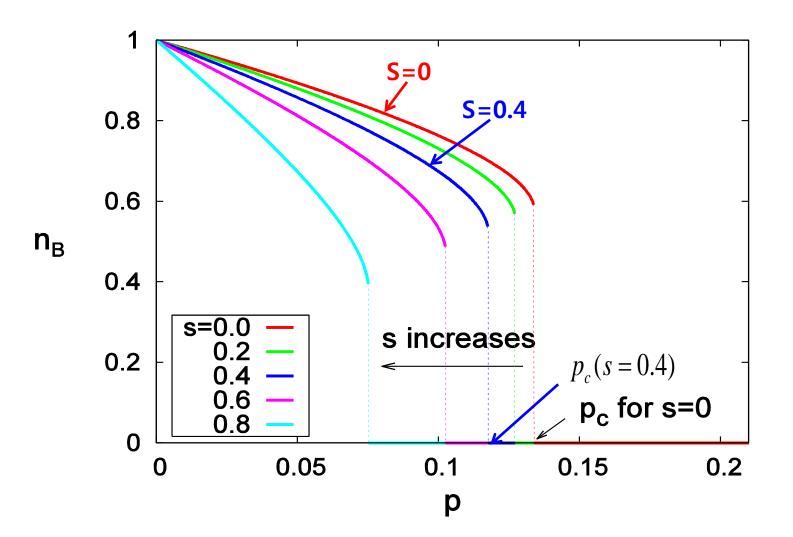
$$n_{A} = \frac{(1-s) - p(4-3s) \pm \sqrt{f(s,p)}}{2(3-2s)}$$
$$n_{B} = \frac{(1-s)(1-p) - p - (2-s)n_{A}}{1-s},$$

where $f(s, p) = (2-s)^2 p^2 - 2(1-s)(4-3s)p + (1-s)^2$

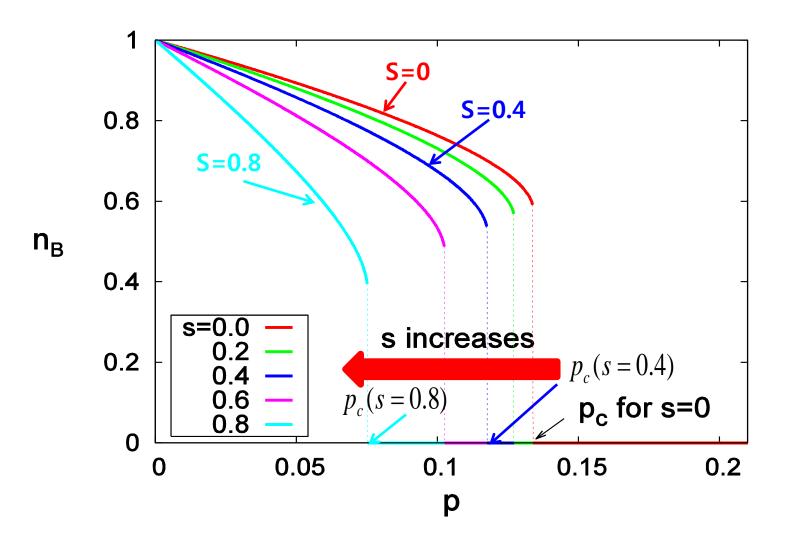
f(s, p)=0: The fixed points (iii) and (iv) coalesce in a saddle-node bifurcation Behavior of the density n_B



Behavior of the density n_B



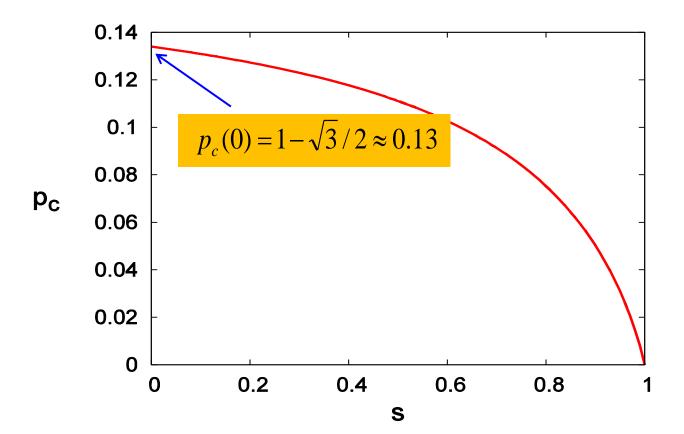
Behavior of the density n_B



$$f(s, p) = (2-s)^{2} p^{2} - 2(1-s)(4-3s)p + (1-s)^{2}$$

Solving $f(s, p) = 0$, we obtain

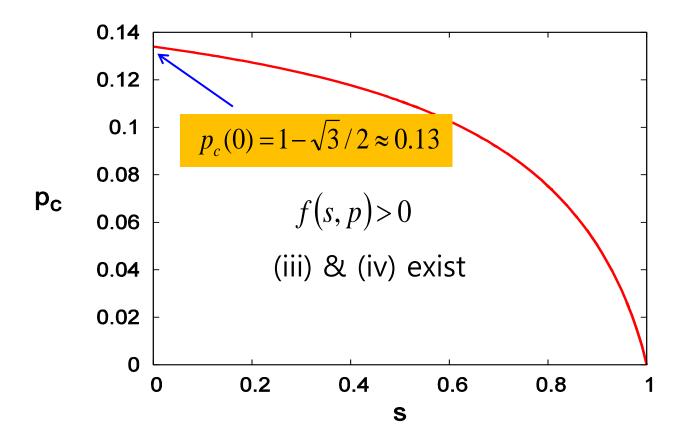
$$p_{c}(s) = \frac{(3s-4)(s-1) - 2\sqrt{(2s-3)(s-1)^{3}}}{(s-2)^{2}}$$



$$f(s, p) = (2-s)^{2} p^{2} - 2(1-s)(4-3s)p + (1-s)^{2}$$

Solving $f(s, p) = 0$, we obtain

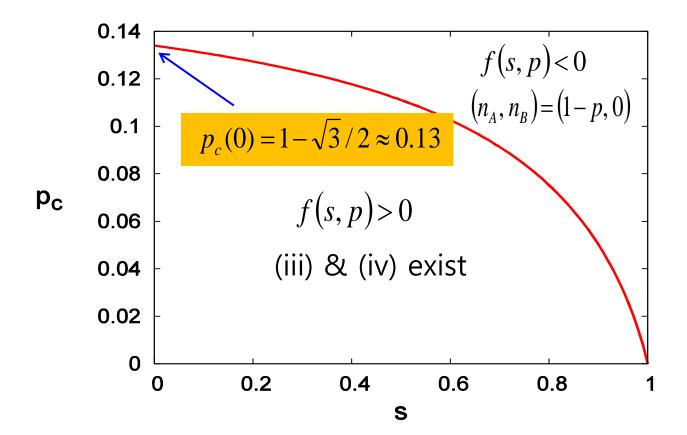
$$p_c(s) = \frac{(3s-4)(s-1) - 2\sqrt{(2s-3)(s-1)^3}}{(s-2)^2}$$



$$f(s, p) = (2-s)^{2} p^{2} - 2(1-s)(4-3s)p + (1-s)^{2}$$

Solving $f(s, p) = 0$, we obtain

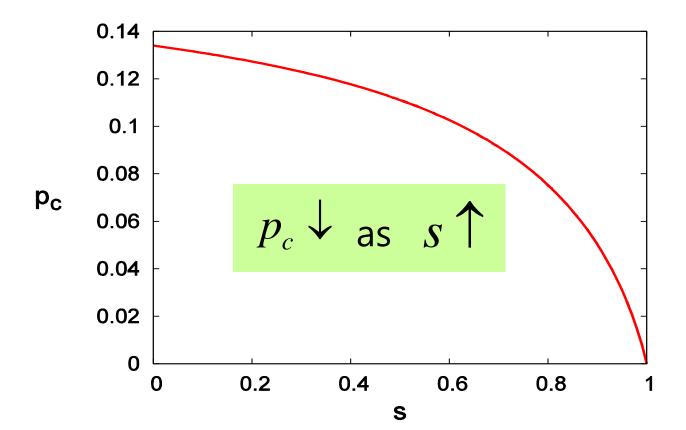
$$p_c(s) = \frac{(3s-4)(s-1) - 2\sqrt{(2s-3)(s-1)^3}}{(s-2)^2}$$



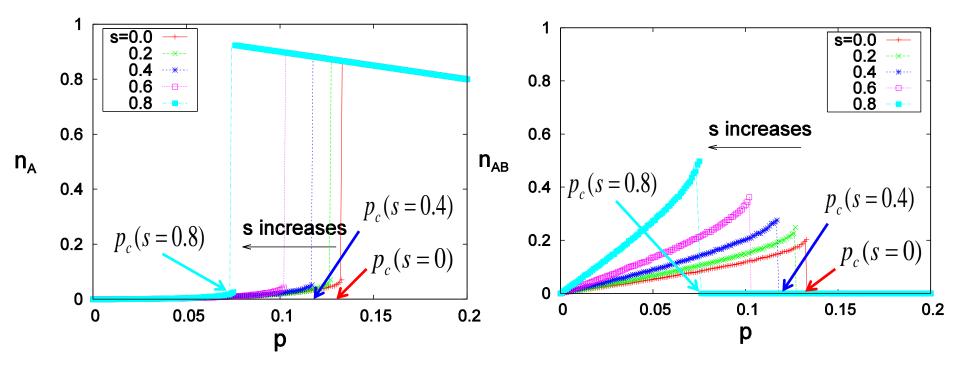
$$f(s, p) = (2-s)^{2} p^{2} - 2(1-s)(4-3s)p + (1-s)^{2}$$

Solving $f(s, p) = 0$, we obtain

$$p_{c}(s) = \frac{(3s-4)(s-1) - 2\sqrt{(2s-3)(s-1)^{3}}}{(s-2)^{2}}$$

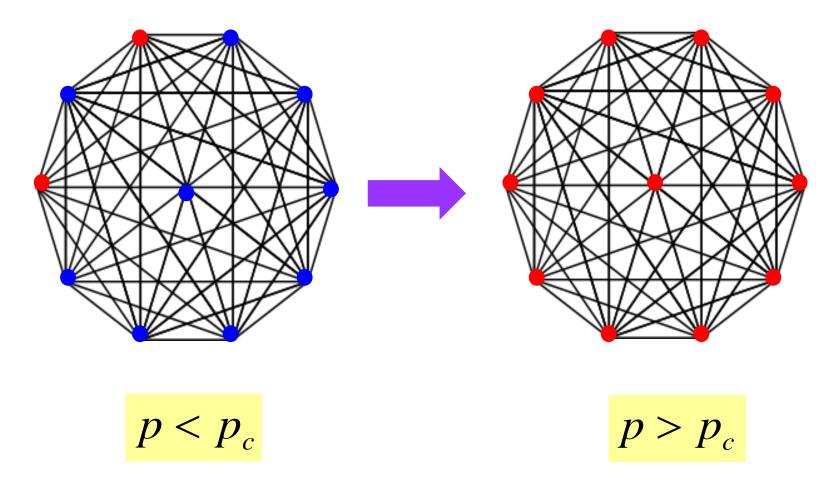


Behavior of the density n_A and n_{AB}

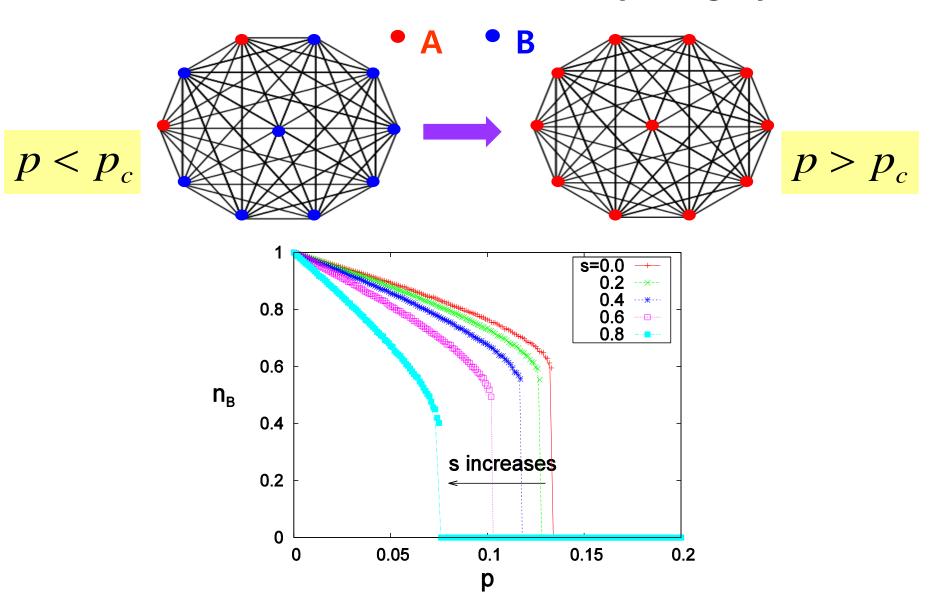


Numerical simulations on the complete graph

• A • B



Numerical simulations on the complete graph



Q. Why does such a counterintuitive relationship hold in $p_c - s$?

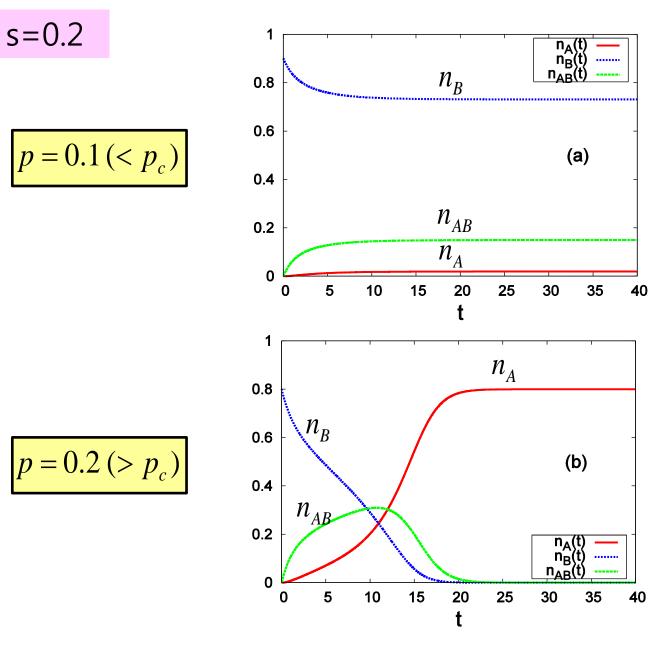
- stubbornness of the neutrals

Increasing $\stackrel{\bullet}{s} \longrightarrow \frac{\text{decreases}}{\longrightarrow}$ the change from AB to A: $P_c \uparrow \frac{\text{decreases}}{\longrightarrow}$ the change from AB to B: $P_c \downarrow \frac{\text{decreases}}{\text{i.e., depletes both A and B}}$

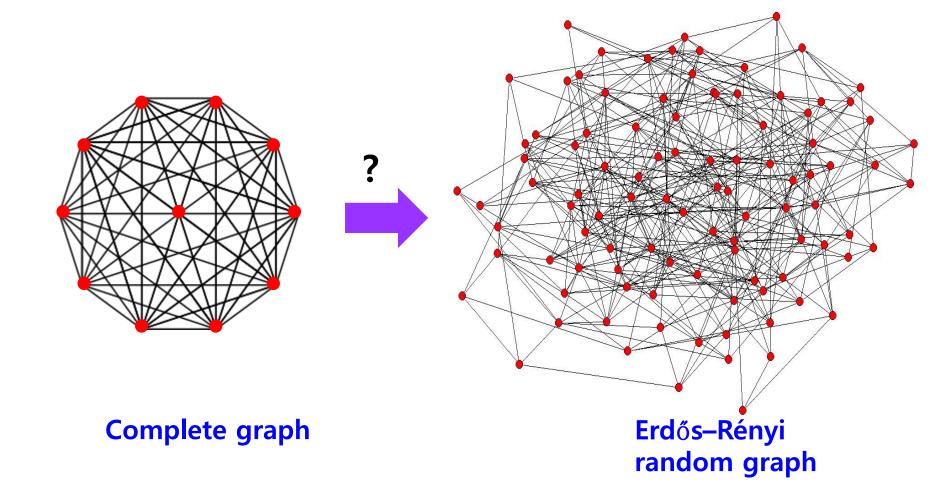
Evangelism of the **B** to the **AB** is <u>weakened</u>, comparing to that of the **A** to the **AB**, which makes <u>fewer</u> **A**c is needed to convert the **AB** to the **A**.

It becomes easier for the zealots to win !!

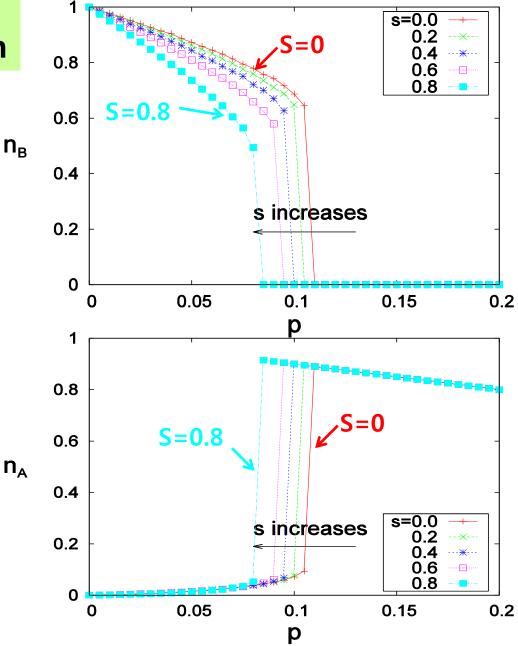
Representative evolution of the system



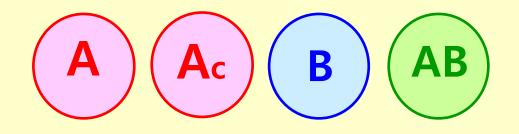
Q. How does the <u>connectivity disorder</u> influence on the $p_c - s$ behavior?



Erdős–Rényi random graph



Q. What would change in the presence of <u>two zealots</u> Ac and Bc?



All possible interactions in the presence of two zealots: Ac with $p(=N_{A_c}/N)$ and Bc with $q(=N_{B_c}/N)$

Speaker	Listener (pre- interaction)	Listener (post- interaction)	Probability
A, Ac	В	AB	1
	AB	AB	S
		Α	1-s
B, Bc	<u>A</u>	AB	_1_
	AB	AB	S
		<u> </u>	<u>1-s</u>

Rate equations in the presence of both zealots: Ac and Bc

$$\frac{dn_A}{dt} = (1-s)(p+n_A)n_{AB} - \underline{n_A(q+n_B)}$$
$$\frac{dn_B}{dt} = (1-s)(q+n_B)n_{AB} - (p+n_A)n_B$$

where $n_{AB} = 1 - p - q - n_A - n_B$

Rate equations in the presence of both zealots: Ac and Bc

$$\frac{dn_A}{dt} = (1-s)(p+n_A)n_{AB} - \underline{n_A}(q+n_B)$$
$$\frac{dn_B}{dt} = (1-s)(q+n_B)n_{AB} - (p+n_A)n_B$$

where $n_{AB} = 1 - p - q - n_A - n_B$

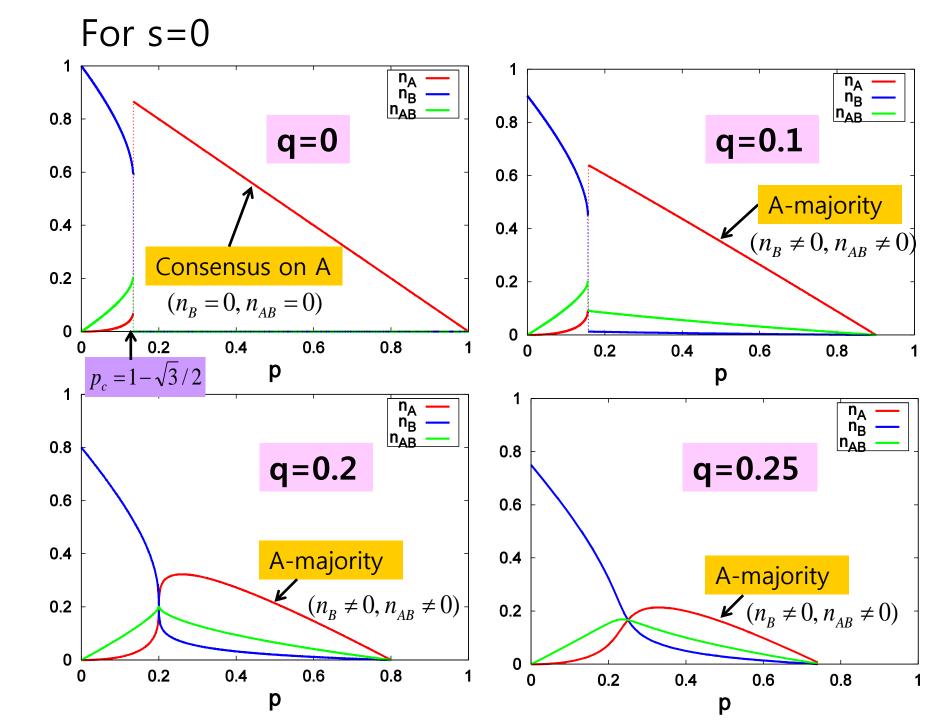
For $q=0: 1^{st}$ order transition to the state of **consensus on A (all A)!**

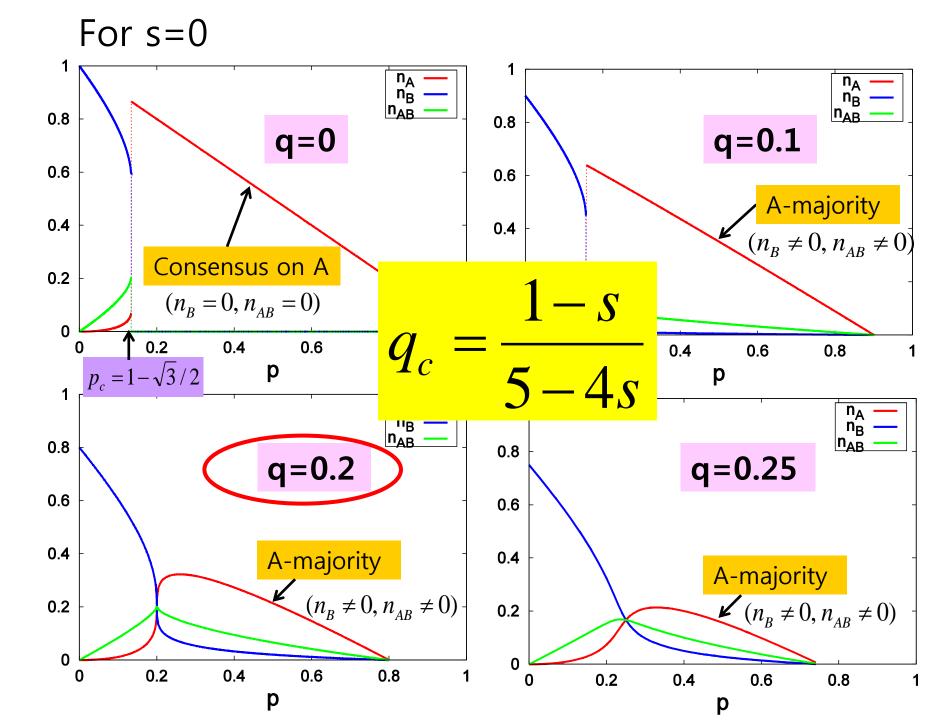
Rate equations in the presence of both zealots: Ac and Bc

$$\frac{dn_A}{dt} = (1-s)(p+n_A)n_{AB} - \underline{n_A(q+n_B)}$$
$$\frac{dn_B}{dt} = (1-s)(q+n_B)n_{AB} - (p+n_A)n_B$$

where $n_{AB} = 1 - p - q - n_A - n_B$

For $q \neq 0$: A-majority state or B-majority state for p>q
for p<q





Summary

- A model for the opinion consensus in a population with <u>zealots</u> and <u>stubborn neutrals</u>
- Effects of the stubbornness of the neutrals:

When the neutrals are more stubbornly moderate, it becomes easier for the zealots to win!

Other generalization of the model - population with two zealots

Ongoing/future study

- Effects of the <u>network topology</u> on the opinion consensus:
 - our model on various complex networks
- Other generalization e.g., evangelical neutrals
- Consideration of local/nonlocal interaction
- Applying to <u>real social systems</u>