Derivation of Markov Process from Path Entropy Maximization Lynn

Julian Lee School of Systems Biomedical Science and Dept. of Bioinformatics and Life Science Soongsil University

Maximum Entropy Principle

Path Entropy Maximization

Derivation of Markov process

Maximum Entropy Principle

E.T. Jaynes (Phys. Rev. 106, 620(1957), Phys. Rev. 108, 171(1957)): Statistical Mechanics as a logical inference

Maximize Gibbs-Shannon entropy $-\sum p_i \log p_i$ under given constraints : Most unbiased estimate

Boltzmann distribution

- Constraint: mean energy
- *****Normalization: $\sum p_i = 1$

$$\sum p_i E_i = \epsilon$$

In the absence of other information (equilibrium), the most unbiased estimate of the probability distribution is obtained by maximizing

$$-\sum_{i} p_i \log p_i + \beta (\sum_{i} p_i E_i - \epsilon) + \nu (\sum_{i} p_i - 1)$$

 $-\sum_{i} p_i \log p_i + \beta (\sum_{i} p_i E_i - \epsilon) + \nu (\sum_{i} p_i - 1)$

 $\delta p_i : -\ln p_i - 1 + \beta E_i + \nu = 0$ $\delta\beta:\sum p_j E_j - \epsilon = 0$ $\delta\nu:\sum p_j - 1 = 0$

Boltzmann distribution

$$p_i = \frac{e^{-\beta E_i}}{\sum_j e^{-\beta E_j}}$$

With β determined by

$$\frac{\sum_k E_k e^{-\beta E_k}}{\sum_j e^{-\beta E_j}} = \epsilon$$

Path entropy maximization

Dynamical system: Obtain probability distribution P(C) for path C

★Maximize the path entropy $-\sum_{C} P(C) \ln P(C)$ under appropriate constraints $\sum_{C} P(C)A^{(\alpha)}(C) = A_0^{(\alpha)} \text{ and } \sum_{C} P(C) = 1$

Path entropy maximization

Jaynes ("Macroscopic prediction", in Complex Systems Operational Approaches in Neurobiology, Physics, and Computers, edited by H. Haken (Springer-Verlag, Berlin, 1985)): "Maximum Caliber principle"

Filyukov and Karpov (J. Eng. Phys. 13, 624, 1967; 13, 798, 1967)

Filyukov (Eng. Phys. Thermophys. 14, 814, 1968)

Discrete time (Filyukov et al.)

✤ $P(C) = p(i_0, i_1, \cdots i_T)$ ♣ Path entropy: $H(T) = -\sum_{i_0, i_1, \cdots, i_T} p_{i_0 i_1 \cdots i_T} \log p_{i_0 i_1 \cdots i_T}$ ♣ Stationary Markov process

$$p_C = p_{i_0} p_{i_0 \to i_1} p_{i_1 \to i_2} \cdots p_{i_{T-1} \to i_T}$$

Markov processes: Definitions

n-point marginal probability

 $p(a_1, \cdots a_n; t) \equiv \sum_{i_0, i_1, \cdots , i_{t-n}, j_1, j_2, \cdots , j_{T-t}} p(i_0, i_1, \cdots , i_{t-n}, a_1, \cdots , a_n, j_1, j_2, \cdots , j_{T-t})$

Transition probability

$$p(i_0, \cdots i_{t-1} \to i_t) \equiv \frac{p(i_0, \cdots i_t)}{p(i_0, \cdots i_{t-1})}$$

n-th order Markov process

 $p(i_0, \cdots i_{t-1} \to i_t) = p(i_{t-n}, i_{t-n+1} \cdots i_{t-1} \to i_t; t) \equiv \frac{p(i_{t-n}, \cdots i_t; t)}{p(i_{t-n}, \cdots i_{t-1}; t)}$

 \rightarrow Transition probability depends only on previous n steps of history

Derivation of Markov processes

- n-th order Markov process follows if only up to (n+1)-point function is constrained
- ✤ General constraints:

$$\sum_{C} P(C) A^{(\alpha)}(C) = \sum_{\{i_0, i_1, \dots i_T\}} p(i_0, i_1, \dots i_T) A^{(\alpha)}(i_0, i_1, \dots i_T) = A_0^{(\alpha)}$$

* One-point constraints:

$$A^{(\alpha)}(i_0, i_1, \dots i_T) = \sum_{t=0}^T \varepsilon_{i_t}^{(\alpha)}$$

$$F_0^{(\alpha)} \equiv \sum_{\{i_0, i_1, \dots i_T\}} (\sum_{t=0}^T \varepsilon_{i_t}^{(\alpha)}) p(i_0, i_1, \dots i_T) - (T+1) E_0^{(\alpha)}$$

$$= \sum_{t=0}^{\infty} \sum_{i_t} \varepsilon_{i_t}^{(\alpha)} p(i_t; t) - (T+1) E_0^{(\alpha)} = 0 \quad (\alpha = 1, \dots N_1)$$

Derivation of Markov processesImage: Second state* Two-point constraints:
$$A^{(\alpha)}(i_0, i_1, \cdots i_T) = \sum_{t=0}^{T-1} J_{i_t i_{t+1}}^{(\alpha)}$$

$$F_{1}^{(\alpha)} \equiv \sum_{\{i_{0},i_{1},\cdots i_{T}\}} (\sum_{t=0}^{T-1} J_{i_{t}i_{t+1}}^{(\alpha)}) p(i_{0},i_{1},\cdots i_{T}) - TJ_{0}^{(\alpha)}$$

$$= \sum_{t=0}^{T-1} \sum_{i_{t}i_{t+1}} J_{i_{t}i_{t+1}}^{(\alpha)} p(i_{t},i_{t+1};t) - TJ_{0}^{(\alpha)} = 0. \quad (\alpha = 1,\cdots N_{2})$$

Derivation of Markov processes

Take the variation of

$$-\sum_{\{i_0,i_1,\cdots i_T\}} p(i_0,i_1,\cdots i_T) \log p(i_0,i_1,\cdots i_T) - \sum_{\alpha=1}^{N_1} \beta_\alpha \left(\sum_{t=0}^T \sum_{i_t} \varepsilon_{i_t}^{(\alpha)} p(i_t;t) - (T+1) E_0^{(\alpha)} \right) \\ + \sum_{\gamma=1}^{N_2} \nu_\gamma \left(\sum_{t=0}^{T-1} \sum_{i_t i_{t+1}} J_{i_t i_{t+1}}^{(\gamma)} p(i_t,i_{t+1};t+1) - T J_0^{(\gamma)} \right) + (\rho+1) \left(\sum_{\{i_0,i_1,\cdots i_T\}} p(i_0,i_1,\cdots i_T) - 1 \right) \right)$$

$$\delta p : -\log p(i_0, i_1, \cdots i_T) - \sum_{\alpha} \beta_{\alpha} \sum_{t=0}^T \varepsilon_{i_t}^{(\alpha)} + \sum_{\gamma} \nu_{\gamma} \sum_{t=0}^{T-1} J_{i_t i_{t+1}}^{(\gamma)} + \rho = 0$$

$$p(i_0, i_1, \cdots i_T) = \exp\left(\rho - \sum_{\alpha} \beta_{\alpha} \sum_{t=0}^T \varepsilon_{i_t}^{(\alpha)} + \sum_{\gamma} \nu_{\gamma} \sum_{t=0}^{T-1} J_{i_t i_{t+1}}^{(\gamma)}\right)$$

Derivation of Markov processes

$$p(i_{0}, i_{1}, \dots i_{T}) = \frac{v(i_{0})G(i_{0}, i_{1})G(i_{1}, i_{2}) \dots G(i_{T-1}, i_{T})v(i_{T})}{\mathbf{v}^{\dagger}\mathbf{G}^{T}\mathbf{v}}$$

$$v(i) \equiv \exp\left(-\sum_{\alpha}\beta_{\alpha}\varepsilon_{i}^{(\alpha)}/2\right)$$

$$G(i, j) \equiv \exp\left(-\sum_{\alpha}\beta_{\alpha}\varepsilon_{i}^{(\alpha)}/2 + \sum_{\gamma}\nu_{\gamma}J_{ij}^{(\gamma)} - \sum_{\alpha}\beta_{\alpha}\varepsilon_{j}^{(\alpha)}/2\right)$$

$$Derivation of Markov processes$$

$$p(a_1, \dots a_m; t) = \sum_{i_0, \dots i_{t-m}, i_{t+1}, \dots i_T} p(i_0, i_1, \dots i_{t-m}, a_1, \dots, a_m, i_{t+1}, \dots, i_T)$$

$$= \frac{[\mathbf{v}^{\dagger} \mathbf{G}^{t-m+1}](a_1)G(a_1, a_2)G(a_2, a_3) \cdots G(a_{m-1}, a_m)[\mathbf{G}^{T-t}\mathbf{v}](a_m)}{\mathbf{v}^{\dagger} \mathbf{G}^T \mathbf{v}}$$

$$p(a_1, \dots a_m \to a_{m+1}; t) = \frac{[\mathbf{v}^{\dagger} \mathbf{G}^{t-m}](a_1)G(a_1, a_2) \cdots G(a_m, a_{m+1})[\mathbf{G}^{T-t}\mathbf{v}](a_{m+1})}{[\mathbf{v}^{\dagger} \mathbf{G}^{t-m}](a_1)G(a_1, a_2) \cdots G(a_{m-1}, a_m)[\mathbf{G}^{T-t+1}\mathbf{v}](a_m)}$$

$$= \frac{G(a_m, a_{m+1})[\mathbf{G}^{T-t}\mathbf{v}](a_{m+1})}{[\mathbf{G}^{T-t+1}\mathbf{v}](a_m)} = p(a_m \to a_{m+1}; t).$$

Perron-Frobenius Theorem

(1) A positive matrix G has a positive real eigenvalue r, such that any other eigenvalue λ is strictly smaller than r in absolute value, $|\lambda| < r$.

(2) There is a left eigenvector $\mathbf{y}^{\dagger} = (y_1, \cdots, y_N)$ for r with positive components. That is, $\mathbf{y}^{\dagger}\mathbf{G} = r\mathbf{y}^{\dagger}$ and $y_i > 0$ for all i. Similarly, there is a right eigenvector \mathbf{z} with positive components, such that $\mathbf{G}\mathbf{z} = r\mathbf{z}$ and $z_i > 0$ for all i.

(3) Left and right eigenvectors with eigenvalue r are non-degenerate.

(4) $\lim_{T\to\infty} \frac{\mathbf{G}^T}{r^T} = \mathbf{z}\mathbf{y}^\dagger$

$T-t \to \infty$ $p(a \rightarrow b; t) = \frac{G(a, b)[\mathbf{G}^{T-t}\mathbf{v}](b)}{[\mathbf{G}^{T-t+1}\mathbf{v}](a)} \rightarrow \frac{G(a, b)z(b)}{rz(a)}$ $t \to \infty$ $p(a;t) = \frac{[\mathbf{v}^{\dagger}\mathbf{G}^{t}](a)z(a)}{r^{t}\mathbf{v}^{\dagger}\mathbf{z}} \to y(a)z(a)$

→ Stationary Markov Process

Time homogeneity

Time homogenous master equation with an arbitrary initial distribution

Initial condition is an additional information, which should also be implemented as a constraint

$$p(a;t=\tau) = \pi(a)$$

Take variation of

$$-\sum_{\{i_0,i_1,\cdots i_T\}} p(i_0,i_1,\cdots i_T) \log p(i_0,i_1,\cdots i_T) - \sum_{\alpha=1}^{N_1} \beta_\alpha \left(\sum_{t=0}^T \sum_{i_t} \varepsilon_{i_t}^{(\alpha)} p(i_t;t) - (T+1) E_0^{(\alpha)}\right) + \sum_{\gamma=1}^{N_2} \nu_\gamma \left(\sum_{t=0}^{T-1} \sum_{i_t i_{t+1}} J_{i_t i_{t+1}}^{(\gamma)} p(i_t,i_{t+1};t+1) - T J_0^{(\gamma)}\right) + (\rho+1) \left(\sum_{\{i_0,i_1,\cdots i_T\}} p(i_0,i_1,\cdots i_T) - 1\right) p(i_0,i_1,\cdots i_T) + \sum_{\gamma=1}^{N_1} \rho(i_1,i_1,\cdots i_T) + \sum_{\gamma=1}$$

+
$$\sum_{a} \lambda(a)(p(a;\tau) - \pi(a))$$

Time homogenous master equation

$$p(i_{0}, i_{1}, \cdots i_{T}) = \exp(\rho + \lambda(i_{\tau}) - \beta \sum_{t=0}^{T} \varepsilon_{i_{t}} + \nu \sum_{t=0}^{T-1} J_{i_{t}i_{t+1}})$$

$$= \exp(\rho + \lambda(i_{\tau}))v(i_{0})G(i_{0}, i_{1})G(i_{1}, i_{2}) \cdots G(i_{T-1}, i_{T})v(i_{T})$$

$$= \frac{v(i_{0})\pi(i_{\tau})G(i_{0}, i_{1})G(i_{1}, i_{2}) \cdots G(i_{T-1}, i_{T})v(i_{T})}{\sum_{j_{0}\cdots j_{T}} v(j_{0})\pi(j_{\tau})G(j_{0}, j_{1})G(j_{1}, j_{2}) \cdots G(j_{T-1}, j_{T})v(j_{T})}$$

 $\begin{aligned} \tau < t: \\ p(a_1, \cdots a_m \to a_{m+1}; t) &= \frac{G(a_m, a_{m+1})[\mathbf{G}^{T-t}\mathbf{v}](a_{m+1})}{[\mathbf{G}^{T-t+1}\mathbf{v}](a_m)} \\ \tau \ge t: \\ p(a_1, \cdots a_m \to a_{m+1}; t) &= \frac{G(a_m, a_{m+1})\sum_a [\mathbf{G}^{\tau-t}](a_{m+1}, a)\pi(a)[\mathbf{G}^{T-\tau}\mathbf{v}](a)}{\sum_b [\mathbf{G}^{\tau-t+1}](a_m, b)\pi(b)[\mathbf{G}^{T-\tau}\mathbf{v}](b)} \\ &= p(a_m \to a_{m+1}; t) \longrightarrow \text{Markov process} \end{aligned}$

Time homogenous master equation

- Again, for infinite duration of the constraints, the transition probability $p(a \rightarrow b; t)$ for $\tau \ge t$ is independent of time, and independent of the initial distribution $\pi(a)$.
- * However, the state occupation probability p(a;t) is time-dependent, with initial condition $p(a;t=\tau) = \pi(a)$

Discrete time-homogeneous master equation:

$$p(a;t+1) = \sum_{b} p(b;t)p(b \to a)$$

Generalization

- Constraints on up to (n+1)-point probability leads to nth point Markov process
- ♦ Condition for time-homogeneity ← Generalization of Perron-Frobenius theorem to higher rank tensor required.

Summary

- Path entropy maximization: Most unbiased estimated of the path probability under the given constraint
- In particular, no correlations exists except those given by the constraints => n-th order Markov process if only up to n-point function is constrained.
- http://arxiv.org/abs/1206.1416
- Collaboration with Steve Pressé (UCSF)