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I. Random walks in homogeneous systems  
Rammal and Toulouse (1983)
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Rammal and Toulouse (1983)
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The probability of return to the origin after t steps
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II. Random walks on a heterogeneous network

Scale-free networks  	  ~-

BA model
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: lM is the mass within the circle

Critical branching tree

Goh PRL (2003), Burda PRE (2001)



n=4, p=0.6

Hierarchical model

Berker and Ostlund, (1979) 

Hinczewski and Berker, (2006)

(u,v) flower model (2,2) flower model



(2,4)-flower model
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Hwang et al. PRE (2009)



Random sequential packing: 
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Goh, et al. PRL (2006) 
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Random walks on a heterogeneous network
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Purposes: 

1) Probability to return to the origin

2) Global first  passage time:

- GFPT distribution

- Mean GFPT

as a function of  and .
• Many studies on these have been performed on deterministic SF nets, 
• but not on undeterministic networks, or 
• asymptotic behaviors for some limited cases
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The protein folding network

- F. Rao and A. Caflisch

JMB (2004)
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Similar to natural cutoff relation
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For the hub

For a node m



(hub)when 2,  0, and ( ) const. during ( ).s ss c md p t t kg ® ® ®

Random walks are trapped at local hubs, 
Minotaur's labyrinth. 
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Effective degree of starting node vs time
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Probability to return to the origin on model nets



Probability to return to the origin on the WWW



First passage time distribution for RWs
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Using the renewal equation, 

FPT probability for RWs 
starting from s to m

	  	is	a	generating	function	of			()
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Mean First Passage Time



1) When the target is a hub with degree 	~ ()
for 2 <  < 3,

2) When the target is a hub with degree 	~ ()
for 2 <  < 3





Conclusions

1. Probability to return to the origin has been studied 
in diverse scale-free networks 

2. First passage time problems have been studied in 
diverse scale-free networks

Complete analytic formulae for those quantities are 
derived in terms of , , , and	.		
References: 
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1) The number of nodes is fixed as N. 

2) Edges are added one by one to the system between 
two nodes randomly chosen at each time step.

èPercolation transition at tc=Lc/N=1/2

èContinuous transition

t=L/N

G

1. Background  

ER ERPR



Achlioptas process

è Growth of large clusters is suppressed.
è Percolation transition point is delayed.

Achlioptas et al, Science (2009,3)

ER ERPR

t=L/N

G

ERPR

1. Pick up two edge candidates randomly.
2. Calculate the product of two-cluster sizes: 

By e1, 7*2=14 vs. by e2, 4*4=16 è e1 < e2 (product rule)
3. Then, e1 is attached, and e2 is discarded.



Is the explosive percolation transition continuous or discontinuous ?

1) R.A. da Costa, S.N. Dorogovtsev, A.V. Goltsev, J.F.F. Mendes  Explosive 
Percolation Transition is Actually Continuous, PRL 105, 255701 (2010).

2) P. Grassberger, C. Christensen, G. Bizhani, S.-W. Son, M. Paczuski, Explosive 
percolation is continuous, but with unusual finite size behavior, PRL 106, 
225701 (2011).

3) O. Riordan and L. Warnke, Explosive percolation is continuous, Science 
333, 322 (2011).

4) H.K. Lee, B.J. Kim, and H. Park, Continuity of the explosive PT, PRE 84, 
020101 (2011).

2. Goal   

1) Achlioptas et al, Explosive percolation transition, Science (2009,3).

2) Many others.



ü The Achlioptas process (AP): 

the dynamics avoiding the formation 

of a given pattern in evolution of graph.

ü The percolation model following the AP:    

the target pattern is giant component. 

Thus, the dynamics has to be proceeded 

to avoid the formation of a giant cluster. 



Inter-cluster edges 

3. Classification of edge candidates

Inter-cluster edge
+

Intra-cluster edge 

Intra-cluster edges 



Fraction of type (ii) & (iii)

t=L/N



4. Model Variants (Product Rule)

ERPR-A (original rule)

S1
2=72 vs. S2a*S2b=4*4=16

èTake e2  

But e1 is desirable

For the case (ii)

ERPR-B

èTake e1 (Absolutely)
Cluster size unchanged  

ERPR-C

Case (ii) is excluded.



Model Variants (Sum Rule)

For the case (ii)

ERSR-A

2S1=2*7 vs. S2a+S2b=4+4=8

èTake e2  

But e1 is desirable

ERSR-B

èTake e1 (Absolutely)
Cluster size unchanged  

ERSR-C

Case (ii) is excluded.



S1a*S1b=7*2=14 vs. 
S2a*S2b=4*4=16

e1 was taken in PR.

For the case (i)

5. Intrinsic fault of product rule

S1a+S1b=7+2=9 vs. 
S2a+S2b=4+4=8

è e2 has to be taken





6. Results



7. da Costa, Dorogovtsev, Goltsev, & Mendes model



Small-world network model by Watts & Strogatz

[Strogatz 1998]
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average number of shortcuts

Addition or rewiring of p=1/N fraction of links changes to the SW network 



Conclusions

1. Size-dependent behavior of the order parameter is sensitive to the 
dynamic rules.

2. This makes it hard to reach a conclusion (discontinuous or 
continuous transition) based on numerical data. 

3. Comparison between randomness in choosing edge candidates 
and suppression strength should to be made analytically. The 
difference should be compared with the order of time delayed due 
to the addition of intra-cluster edges.     

Y.S. Cho and BK, Phys. Rev. Lett. 107, 275703 (2011).


