First passage time for random walks on complex networks

B. Kahng

Dept of Physics \& Astronomy
Seoul National University,
Korea
With Sungmin Hwang and D.-S. Lee
The $5^{\text {th }}$ KIAS conference on statistical physics
Non-equilibrium statistical physics of complex systems At KIAS, Seoul, July 3-6, 2012

I. Random walks in homogeneous systems

 Rammal and Toulouse (1983)```
J. Physique - LETTRES }44\mathrm{ (1983) L-13 - L-22
1er JaNvier 1983, page L-13
Classification
Physics Abstracts
05.40-72.90-64.70
```


## Random walks on fractal structures and percolation clusters

```
R. Rammal (*) and G. Toulouse
Laboratoire de Physique de l'Ecole Normale Supérieure, 24, rue Lhomond, 75231 Paris Cedex 05, France
(Requ le 28 octobre 1982, accepté le 10 novembre 1982)
```


## Rammal and Toulouse (1983)

$$
p_{i s}(t)=\sum_{j \in n n(i)} \frac{1}{z_{j}} p_{j s}(t-1) \quad \text { Occupation probability }
$$

$$
\left\langle r^{2}(t)\right\rangle \sim t^{2 / d_{w}}
$$

$$
\Sigma(t) \sim r^{d_{f}} \sim t^{d_{f} / d_{w}} \sim t^{d_{s} / 2}
$$

The number of accessible sites in random walks of $t$ steps
$\rho(\omega) \sim \omega^{d_{s}-1}$

Using the scaling relation of $\rho(\omega)$

$$
\frac{d_{s}}{2}=\frac{d_{f}}{d_{w}}
$$

The probability of return to the origin after $t$ steps

$$
\begin{aligned}
& P_{o}(t)=\frac{1}{N} \sum_{s=1} p_{s s}(t) \\
& \approx \frac{1}{N} \sum_{i=0}^{N-1}\left(1-\mu_{i}\right)^{t} \\
& \approx \int_{0}^{\infty} d \mu \rho_{\Delta}(\mu) e^{-\mu t} \approx \int_{0}^{\infty} d \mu \mu^{\frac{d_{s}}{2}-1} e^{-\mu t} \\
& \sim t^{-\frac{d_{s}}{2}} \quad(t \rightarrow \infty) \\
& P_{o}(t) \sim \frac{1}{\Sigma(t)} \sim \frac{1}{t^{d_{/} / 2}} \\
& \text { The number of distinct } \\
& \text { sites visited } \\
& S(t) \sim\left\{\begin{array}{cc}
t^{d_{s} / 2} & d_{s}<2 \\
t & d_{s}>2
\end{array}\right.
\end{aligned}
$$

## II. Random walks on a heterogeneous network

Scale-free networks $P_{d}(k) \sim k^{-\gamma}$


## Critical branching tree

$$
b_{0}=1-\sum_{m=1} b_{m} \quad b_{m}=\frac{\langle m\rangle_{b}}{\varsigma(\gamma-1)} m^{-\gamma} \quad(m \geq 1)
$$

$$
\langle M\rangle \sim \ell^{d_{B}} \quad d_{B}= \begin{cases}2 & \gamma>3 \\ \frac{\gamma-1}{\gamma-2} & 2<\gamma<3\end{cases}
$$

$M$ is the mass within the circle
Goh PRL (2003), Burda PRE (2001)

$$
d_{\mathrm{s}}= \begin{cases}\frac{2(\gamma-1)}{2 \gamma-3}, & \text { for } 2<\gamma<3 \\ \frac{4}{3}, & \text { for } \gamma>3\end{cases}
$$



## Hierarchical model

(u,v) flower model
$(2,2)$ flower model


Berker and Ostlund, (1979)
Hinczewski and Berker, (2006)

$$
n=4, p=0.6
$$

(2,4)-flower model

## generation <br> $\mathrm{n}=0$

generation $\mathrm{n}=1$

$$
\left\langle d_{i j}\right\rangle \sim \begin{cases}N^{1 / d_{f}} & \text { for } p=0 \\ \ln N & \text { for } p \neq 0\end{cases}
$$

## generation $\mathrm{n}=3$

generation $\mathrm{n}=2$

$\longleftarrow$



Hwang et al. PRE (2009)

## Random sequential packing:







## Random walks on a heterogeneous network

$$
p_{i s}(t \rightarrow \infty)=\frac{k_{i}}{2 L}
$$

Noh and Rieger, PRL (2004)

$$
\begin{aligned}
& P_{o}(t)=\frac{1}{N} \sum_{s=1} p_{s s}(t) \\
& p_{s s}(t)=?
\end{aligned}
$$

## Purposes:

1) Probability to return to the origin $\quad p_{s s}(t)$
2) Global first passage time:

- GFPT distribution
- Mean GFPT

$$
\begin{aligned}
& F_{m}(t)=\sum_{i=1}^{N} \frac{k_{i}}{2 L} F_{m i}(t) \\
& T_{m}=\sum_{t} t F_{m}(t)
\end{aligned}
$$

as a function of $d_{s}$ and $\gamma$.

- Many studies on these have been performed on deterministic SF nets,
- but not on undeterministic networks, or
- asymptotic behaviors for some limited cases


The protein folding network

- F. Rao and A. Caflisch

JMB (2004)

## Probability to return to the origin $s$

$$
\left.\begin{array}{l}
p_{i s}(t \rightarrow \infty)=\frac{k_{i}}{2 L} \quad p_{i s}(t)=\frac{\hat{k}_{i}(t)}{2 \hat{L}(t)} \\
\hat{k}_{i}(t)=\sum_{j \in n n(i)} \widehat{L}_{i j}(t) \quad \text { Sum of the link accessibility from node } j \text { to i } \\
\hat{L}(t)=\sum_{i=1}^{N} \widehat{k}_{i}(t) / 2 \quad \text { Number of accessed links } \\
\hat{L}(t) \simeq \frac{<k>}{2 P_{o}(t-2)} \sim\left\{\begin{array}{ll}
t^{d_{s} / 2} & \text { for } t \ll t_{x} \quad \text { cf. } \quad \Sigma(t) \sim t^{d_{s} / 2} \\
L & \text { for } t \gg t_{x}
\end{array} \quad\right. \text { Number of accessible sites }
\end{array}\right\} \begin{aligned}
& t_{x}^{2 / d_{s}}
\end{aligned}
$$

For the hub

$$
\begin{aligned}
& \hat{k}_{h}(t) \sim \hat{L}(t)^{1 /(\gamma-1)} \quad \text { Similar to natural cutoff relation } \\
& \sim t^{d_{s} / 2(\gamma-1)} \quad \text { assumed }\left\{\hat{k}_{i}(t)\right\} \text { follow } P_{d}(\hat{k}) \\
& \hat{k}_{h} \sim\left\{\begin{array}{ll}
t^{d_{s} / 2(\gamma-1)} & \text { for } t \ll t_{x} \\
k_{h} & \text { for } t \gg t_{x}
\end{array} \quad t_{x} \sim k_{h}^{2(\gamma-1) / d_{s}} \sim L^{2 / d_{s}}\right.
\end{aligned}
$$

$$
p_{h h}(t)=\frac{\hat{k}_{h}(t)}{2 \hat{L}(t)} \sim\left\{\begin{array}{ll}
t^{-d_{s}^{\text {(hub) })} / 2} & \text { for } t \ll t_{\mathrm{x}}, \\
\frac{k_{h}}{2 L} & \text { for } t \gg t_{\mathrm{x}},
\end{array} \quad d_{s}^{(\mathrm{hub})}=d_{s} \frac{\gamma-2}{\gamma-1}\right.
$$

For a node $m$

$$
\hat{k}_{m} \sim\left\{\begin{array}{ll}
t^{d_{s} / 2(\gamma-1)} & \text { for } t \ll t_{c}\left(k_{m}\right) \\
k_{m} & \text { for } t \gg t_{c}\left(k_{m}\right)
\end{array} \quad t_{c}\left(k_{m}\right) \sim k_{m}^{2(\gamma-1) / d_{s}}\right.
$$

$$
\hat{k}_{m} \sim\left\{\begin{array}{ll}
t^{d_{s} / 2(\gamma-1)} & \text { for } t \ll t_{c}\left(k_{m}\right) \\
k_{m} & \text { for } t \gg t_{c}\left(k_{m}\right)
\end{array} \quad t_{c}\left(k_{m}\right) \sim k_{m}^{2(\gamma-1) / d_{s}}\right.
$$

$$
p_{m m}(t)=\frac{\hat{k}_{m}(t)}{2 \hat{L}(t)} \sim\left\{\begin{array}{ccc}
t^{-d_{s}^{(h) / 2}} & \text { for } & t \ll t_{c}\left(k_{m}\right) \\
k_{m} t^{-d_{s} / 2} & \text { for } & t_{c}\left(k_{m}\right) \ll t \ll t_{x} \\
\frac{k_{m}}{2 L} & \text { for } & t \gg t_{x}
\end{array}\right.
$$

$$
d_{s}^{\text {(hub) }}=d_{s} \frac{\gamma-2}{\gamma-1}
$$

when $\gamma \rightarrow 2, d_{s}^{(\text {hub })} \rightarrow 0$, and $p_{s s}(t) \rightarrow$ const. during $t_{c}\left(k_{m}\right)$.

Random walks are trapped at local hubs, Minotaur's labyrinth.

Effective degree of starting node vs time


## Probability to return to the origin on model nets



## Probability to return to the origin on the WWW



## First passage time distribution for RWs

$$
F_{m}(t)=\sum_{s=1}^{N} \frac{k_{s}}{2 L} F_{m s}(t)
$$

FPT probability for RWs starting from $s$ to $m$

Using the renewal equation,

$$
\begin{aligned}
p_{m s}(t) & =\delta_{m s} \delta_{t 0}+\sum_{t^{\prime}=0}^{t} F_{m s}\left(t^{\prime}\right) p_{m m}\left(t-t^{\prime}\right) \\
\mathcal{F}_{m}(z) & =\frac{k_{m} z}{2 L(1-z)} \frac{1}{R_{m}(z)} \quad \begin{array}{c}
R_{m}(z) \text { is a generating function of } \\
p_{m m}(t)
\end{array}
\end{aligned}
$$

## Phase diagram in $\left(d_{s}, \gamma\right)$ space

(II) $2<d_{s}<d_{c}=\frac{2(\gamma-1)}{(\gamma-2)}$


$$
\begin{aligned}
& \text { (I) } d_{s}<2 \quad 1 \ll t \ll t_{c}\left(k_{m}\right) \\
& F_{m}(t) \sim \frac{k_{m}}{2 L} t^{-\left(1-d_{s}^{(h)} / 2\right)} d_{s}^{(h)}=d_{s} \frac{\gamma-2}{\gamma-1} \\
& t_{c}\left(k_{m}\right) \ll t \ll t_{x} \\
& F_{m}(t) \sim \frac{1}{2 L} t^{-\left(1-d_{s} / 2\right)}
\end{aligned}
$$

$$
\begin{aligned}
& t \gg t_{x} \\
& F_{m}(t) \sim N^{-d_{s} / 2} e^{-t / N^{d_{s} / 2}} \sim
\end{aligned}
$$

$$
\begin{aligned}
& \text { (II) } 2<d_{s}<d_{c}=\frac{2(\gamma-1)}{(\gamma-2)} \\
& F_{m}(t) \sim \frac{k_{m}}{2 L} t^{-\left(1-d_{s}^{(h)} / 2\right)}+1
\end{aligned}
$$

(III) $d_{c}<d_{s}$

$$
F_{m}(t) \sim N^{-1} k_{m} e^{-t / N k_{m}^{-1}} \quad \text { for any } t
$$

## Mean First Passage Time

$$
\begin{aligned}
\mathcal{F}_{m} & (z)=\frac{k_{m} z}{2 L(1-z)} \frac{1}{\mathcal{R}_{m}(z)} \\
T_{m} & =\left.\frac{\partial}{\partial z} \mathcal{F}_{m}(z)\right|_{z=1} \approx \frac{2 L}{k_{m}} \mathcal{R}_{m}^{*}(1)+1 \\
& =\frac{2 L}{k_{m}} \sum_{t=0}^{\infty}\left(R_{m}(t)-R_{m}(\infty)\right)+1 . \\
T_{m} & \approx \frac{2 L}{k_{m}} \int_{1}^{t_{x}}\left[R_{m}(t)-R_{m}(\infty)\right] d t \\
& \sim\left\{\begin{array}{ccc}
N^{2 / d_{s}} & \text { (I) } & d_{s}<2, \\
N k_{m}^{-\alpha} & \text { (II) } & 2<d_{s}<d_{c}, \\
N k_{m}^{-1} & \text { (III) } & d_{s}>d_{c},
\end{array}\right.
\end{aligned}
$$

1) When the target is a hub with degree $k_{h} \sim N^{1 /(\gamma-1)}$ for $2<\gamma<3$,

$$
T_{h} \sim\left\{\begin{array}{cc}
N^{2 / d_{s}} & (\text { I and II }), \\
N^{(\gamma-2) /(\gamma-1)} & (\text { III }) .
\end{array}\right.
$$

2) When the target is a hub with degree $k_{h} \sim N^{1 /(5-\gamma)}$ for $2<\gamma<3$

$$
T_{h} \sim\left\{\begin{array}{cc}
N^{2 / d_{s}} & (\mathrm{I}), \\
N^{\left[2(3-\gamma)+2(\gamma-1) / d_{s}\right] /(5-\gamma)} & (\mathrm{II}), \\
N^{(4-\gamma) /(5-\gamma)} & \text { (III) } .
\end{array}\right.
$$



## Conclusions

1. Probability to return to the origin has been studied in diverse scale-free networks
2. First passage time problems have been studied in diverse scale-free networks

Complete analytic formulae for those quantities are derived in terms of $d_{s}, \gamma, k_{m}$, and $N$.

References:

1) Hwang et al. PRE 82, 056110 (2010)
2) Hwang et al. PRE 85, 046110 (2012)
3) Hwang et al. Preprint (2012)

## Suppression effect on explosive percolations

## B. Kahng

Dept of Physics \& Astronomy
Seoul National University,
Korea
With Y.S. Cho
The $5^{\text {th }}$ KIAS conference on statistical physics
Non-equilibrium statistical physics of complex systems
At KIAS, Seoul, July 3-6, 2012

1. Background


1) The number of nodes is fixed as $N$.
2) Edges are added one by one to the system between two nodes randomly chosen at each time step.
$\rightarrow$ Percolation transition at $t c=L c / N=1 / 2$
$\rightarrow$ Continuous transition

Achlioptas process


ERPR



1. Pick up two edge candidates randomly.
2. Calculate the product of two-cluster sizes: By $\mathrm{e}_{1}, 7 * 2=14$ vs. by $\mathrm{e}_{2}, 4 * 4=16 \rightarrow \mathrm{e}_{1}<\mathrm{e}_{2}$ (product rule)
3. Then, $e_{1}$ is attached, and $e_{2}$ is discarded.
$\rightarrow$ Growth of large clusters is suppressed.
$\rightarrow$ Percolation transition point is delayed.
4. Goal

Is the explosive percolation transition continuous or discontinuous?

1) Achlioptas et al, Explosive percolation transition, Science $(2009,3)$.
2) Many others.
3) R.A. da Costa, S.N. Dorogovtsev, A.V. Goltsev, J.F.F. Mendes Explosive Percolation Transition is Actually Continuous, PRL 105, 255701 (2010).
4) P. Grassberger, C. Christensen, G. Bizhani, S.-W. Son, M. Paczuski, Explosive percolation is continuous, but with unusual finite size behavior, PRL 106, 225701 (2011).
5) O. Riordan and L. Warnke, Explosive percolation is continuous, Science 333, 322 (2011).
6) H.K. Lee, B.J. Kim, and H. Park, Continuity of the explosive PT, PRE 84, 020101 (2011).
$\checkmark$ The Achlioptas process (AP):
the dynamics avoiding the formation of a given pattern in evolution of graph.
$\checkmark$ The percolation model following the AP: the target pattern is giant component. Thus, the dynamics has to be proceeded to avoid the formation of a giant cluster.

## 3. Classification of edge candidates



Inter-cluster edges
Inter-cluster edge
Intra-cluster edges
Intra-cluster edge

## Fraction of type (ii) \& (iii)



## 4. Model Variants (Product Rule)



For the case (ii)
ERPR-A (original rule)
$S_{1}^{2}=7^{2}$ vs. $S_{2 a}^{*} S_{2 b}=4^{*} 4=16$
$\rightarrow$ Take $e_{2}$
But $e_{1}$ is desirable

ERPR-B
$\rightarrow$ Take $\mathrm{e}_{1}$ (Absolutely) Cluster size unchanged

## ERPR-C

Case (ii) is excluded.

## Model Variants (Sum Rule)



For the case (ii)
ERSR-A
$2 S_{1}=2^{\star} 7$ vs. $S_{2 a}+S_{2 b}=4+4=8$
$\rightarrow$ Take $e_{2}$
But $e_{1}$ is desirable

ERSR-B
$\rightarrow$ Take $\mathrm{e}_{1}$ (Absolutely)
Cluster size unchanged

## ERSR-C

Case (ii) is excluded.

## 5. Intrinsic fault of product rule



For the case (i)

$$
\begin{gathered}
\mathrm{S}_{1 \mathrm{a}} * \mathrm{~S}_{1 \mathrm{~b}}=7 * 2=14 \mathrm{vs} . \\
\mathrm{S}_{2 \mathrm{a}}^{*} \mathrm{~S}_{2 \mathrm{~b}}=4 * 4=16 \\
\mathrm{e}_{1} \text { was taken in PR. }
\end{gathered}
$$

$$
\begin{gathered}
\mathrm{S}_{1 \mathrm{a}}+\mathrm{S}_{1 \mathrm{~b}}=7+2=9 \mathrm{vs} \\
\mathrm{~S}_{2 \mathrm{a}}+\mathrm{S}_{2 \mathrm{~b}}=4+4=8
\end{gathered}
$$

$\rightarrow \mathrm{e}_{2}$ has to be taken

6. Results






7. da Costa, Dorogovtsev, Goltsev, \& Mendes model


## Small-world network model by Watts \& Strogatz



average number of shortcuts
[Strogatz 1998]

| MBER $15 \quad$ PHYSICAL REVIEW LET TERS |
| :---: | :---: |
| Small-World Networks: Evidence for a Crossover Picture |
| Marc Barthélémy* and Luís A. Nunes Amaral |
| r for Polymer Studies and Department of Physics, Boston University, Boston, Massachusett |
| (Received 8 December 1998) |

Addition or rewiring of $p=1 / \mathrm{N}$ fraction of links changes to the SW network

## Conclusions

1. Size-dependent behavior of the order parameter is sensitive to the dynamic rules.
2. This makes it hard to reach a conclusion (discontinuous or continuous transition) based on numerical data.
3. Comparison between randomness in choosing edge candidates and suppression strength should to be made analytically. The difference should be compared with the order of time delayed due to the addition of intra-cluster edges.
Y.S. Cho and BK, Phys. Rev. Lett. 107, 275703 (2011).
