KIAS, Mar. 10, 2011

TeV Seesaw at Colliders

Eung Jin Chun

KOREA INSTITUTE FOR ADVANCED STUDY

Neutrino Mass Models

- RHN (and Z') (Type I)
- Higgs Triplet Model (Type II)
- Fermion Triplet Model (Type III)
- MSSM with R-parity/L violation
- Radiative models: Zee-Babu

Three seesaws at TeV

EJChun@KIAS

Type I with U(1)'

$$W = yLH_2N + hNNS$$

$$u - N$$
 mixing: $\delta = y \frac{\langle H_2 \rangle}{M}$ $m_{\nu} = y^2 \frac{\langle H_2 \rangle^2}{M}$

- RHN mass after U(1)' breaking at TeV scale: M=h <S>.
- RHN production: $pp \rightarrow Z' \rightarrow NN$.
- LNV & LFV: same-sign dileptons, NN \rightarrow I⁺I⁺W⁻W⁻.
- Small Yukawa y < 10^{-7} \rightarrow Displaced vertices.
- In case of SUSY, sRHN can be a thermal dark matter.

Z' models from E6

Langacker, 0801.1345

SO(10)	SU(5)	$2\sqrt{10}Q_{\chi}$	$2\sqrt{6}Q_{\psi}$	$2\sqrt{15}Q_{\eta}$	$2Q_I$	$2\sqrt{10}Q_N$	$2\sqrt{15}Q_S$
16	$10 \ (u, d, u^c, e^+)$	-1	1	-2	0	1	-1/2
	$5^{*} (d^{c}, \nu, e^{-})$	3	1	1	-1	2	4
	ν^{c}	-5	1	-5	1	0	-5
10	$5 (D, H_u)$	2	-2	4	0	-2	1
	$5^* (D^c, H_d)$	-2	-2	1	1	-3	-7/2
1	1 S	0	4	-5	-1	5	5/2

EWPT and Tevatron limit

Z'	$M_{Z'}$ [GeV]					$\chi^2_{\rm min}$		
	electroweak	CDF	DØ	LEP 2	$\sin \theta_{ZZ'}$	$\sin heta_{ZZ'}^{\min}$	$\sin heta_{ZZ'}^{\max}$	
Z_{χ}	1,141	892	800	673	-0.0004	-0.0016	0.0006	47.3
Z_{ψ}	147	878	763	481	-0.0005	-0.0018	0.0009	46.5
Z_{η}	427	982	810	434	-0.0015	-0.0047	0.0021	47.7
Z_I	1,204	789	692		0.0003	-0.0005	0.0012	47.4
Z_S	1,257	821	719		-0.0003	-0.0013	0.0005	47.3
Z_N	623	861	744		-0.0004	-0.0015	0.0007	47.4
Z_R	442				-0.0003	-0.0015	0.0009	46.1
Z_{LR}	998	630		804	-0.0004	-0.0013	0.0006	47.3
$Z_{ u}$	(803)	(740)			-0.0015	-0.0094	0.0081	47.7
Z_{SM}	1,403	1,030	950	1,787	-0.0008	-0.0026	0.0006	47.2
Z_{string}	1,362				0.0002	-0.0005	0.0009	47.7
SM		∞				0		48.5

Dilepton invariant mass spectrumΖ'_γ, Γ=24.1GeV a) _Ζ'[¨], Γ=13.1GeV L=100fb⁻¹ Z'_{LR}, Γ=38.6GeV SM Events / 20 GeV 10 1600 1800 1000 1300 1400 1500 1700 1100 1200 M_{II} [GeV]

CDF di-muon limit

CMS limit

CMS-EXO-10-013

B-L models

Salvioni, Villadoro & Zwirner, 0909.1320

	(u,d)	u^c	d^c	(ν, e)	ν^c	e^{c}
T_{3L}	$\left(+\tfrac{1}{2},-\tfrac{1}{2}\right)$	0	0	$\left(+\tfrac{1}{2},-\tfrac{1}{2}\right)$	0	0
Y	$+\frac{1}{6}$	$-\frac{2}{3}$	$+\frac{1}{3}$	$-\frac{1}{2}$	0	+1
B-L	$+\frac{1}{3}$	$-\frac{1}{3}$	$-\frac{1}{3}$	-1	+1	+1
$Q_{Z'}$	$\frac{1}{6}\widetilde{g}_Y + \frac{1}{3}\widetilde{g}_{BL}$	$-\frac{2}{3}\widetilde{g}_Y - \frac{1}{3}\widetilde{g}_{BL}$	$\frac{1}{3}\widetilde{g}_Y - \frac{1}{3}\widetilde{g}_{BL}$	$-\frac{1}{2}\widetilde{g}_Y - \widetilde{g}_{BL}$	\widetilde{g}_{BL}	$\widetilde{g}_Y + \widetilde{g}_{BL}$

EWPT

7 TeV LHC discovery

EWPT (inside red); Tevatron (inside blue); LHC discovery (outside yellow)

Light $\widetilde{Z}_{\text{B-L}}$ and \widetilde{N} DM

PB, JCP, EJC, work to appear

- RH sneutrino thermal freeze-out density determined by t-channel B-L gaugino exchange.
- RH neutrino decay process is important.

TeV seesaw at colliders

Relic abundance of $\widetilde{\mathsf{N}}$ DM

Sneutrino mass = 300 GeV

Displaced Higgs from cascade

Type II seesaw

EJC, Jung, Park, hep-ph/0304069

$$\begin{split} \Delta &= (\Delta^{++}, \Delta^{+}, \Delta^{0}) \quad \text{with} \quad Y = 1; \quad L_{i} = (\nu_{i}, l_{i})_{L} \quad \text{and} \quad \Phi = (\phi^{0}, \phi^{-}) \\ \mathcal{L}_{\Delta} &= f_{ij} L_{i} L_{j} \Delta + \mu \Phi \Phi \Delta + h.c. \end{split}$$

$$v_{\Delta} = \mu \frac{v_{\Phi}^2}{M_{\Delta}^2} \implies M_{ij}^{\nu} = f_{ij} v_{\Delta} \quad \Leftarrow \quad f_{ij} \frac{\mu}{v_{\Phi}} \sim 10^{-12}$$

- Same flavor structure for $M^{
 u}$ and f
- Neutrino mass patterns distinguishable by lepton flavor violating processes
- Production and decay of the doubly charged Higgs boson at colliders:

 \implies Direct test of the model

5 Physical fields

$$(\phi^0, \phi^-)$$
 $\Delta^{++}, H^+, H^0, A^0 \text{ and } h^0$
 $(\Delta^{++}, \Delta^+, \Delta^0)$ $\Sigma^{++}, H^+, H^0, A^0 \text{ and } h^0$
Triplet VEV: $v_{\Delta} = \mu v_{\Phi}^2 / 2M_{\Delta^0}^2$ $\xi \equiv v_{\Delta}/v_{\Phi}$

$$a = 2 + 4(4\lambda_1 - \lambda_4 - \lambda_5)m_W^2/g^2(m_{H^0}^2 - m_{h^0}^2)$$

Physical basis in the limit of $\xi <<1$:

 $\phi_I^0 = G^0 - 2\xi A^0 \; ,$

 $\Delta_I^0 = A^0 + 2\xi G^0 ,$

$$\phi_R^0 = h^0 - a\xi H^0,$$

$$\Delta_R^0 = H^0 + a\xi h^0$$

$$\phi^+ = G^+ + \sqrt{2}\xi H^+$$

$$\Delta^+ = H^+ - \sqrt{2}\xi G^+$$

Mass spectrum $M_{\Delta^{\pm\pm}}^2 = M^2 + 2 \frac{\lambda_4 - \lambda_5}{g^2} M_W^2$ $M_{\Delta^{\pm\pm}}^2 = M^2 + 2 \frac{\lambda_5}{g^2} M_W^2$

$$M_{H^{\pm}}^{-} = M_{\Delta^{\pm\pm}}^{-} + 2 \frac{1}{g^2} M_W^{-}$$
$$M_{H^0,A^0}^{-} = M_{H^{\pm}}^{-} + 2 \frac{\lambda_5}{g^2} M_W^{-}.$$

Mass relations: $M_{H^0}^2 = M_{A^0}^2$ $M_{H^+}^2 - M_{\Delta^{++}}^2 = M_{H^0}^2 - M_{H^+}^2 = 2 \frac{\lambda_5}{g^2} M_W^2$

Note: $\lambda_5 > 0$, $M_{\Delta^{\pm\pm}} < M_{H^\pm} < M_{H^0,A^0}$

$$\Delta^{++} \xrightarrow{\mathsf{f}, \xi} l^+ l^+, W^+ W^+ \qquad \Delta^{++} \xrightarrow{\mathsf{g}} H^+ W^{+*}$$

EJChun@KIAS

Doubly charge Higgs Decay

$$\mathcal{L} = \frac{1}{\sqrt{2}} \left[f_{ij} \, \bar{l}^c{}_i P_L l_j + g \xi M_W \, W^- W^- \right] \Delta^{++} + h.c.$$

$$\Gamma(\Delta^{--} \to l_i l_j) = S \frac{f_{ij}^2}{16\pi} M_{\Delta^{\pm\pm}}$$

$$\Gamma(\Delta^{--} \to WW) = \frac{\alpha_2 \xi^2}{32} \frac{M_{\Delta^{\pm\pm}}^3}{M_W^2} (1 - 4r_W + 12r_W^2) (1 - 4r_W)^{1/2}$$

$$S = 2(1)$$
 for $i \neq j (i = j)$ $r_W = M_W^2 / M_{\Delta^{\pm \pm}}^2$

EJChun@KIAS

Maximal decay length

$$M_{ij}^{\nu} = f_{ij}\xi v_{\Phi} \qquad \sum_{ij} f_{ij}^{2} \propto \operatorname{Tr}(M_{\nu}^{2})$$

$$\Gamma_{\Delta^{\pm\pm}} = M_{\Delta^{\pm\pm}} \left(\frac{1}{16\pi} \frac{\bar{m}^{2}}{\xi^{2} v_{\Phi}^{2}} + \frac{\alpha_{2}}{32} \frac{\xi^{2}}{r_{W}} (1 - 4r_{W} + 12r_{W}^{2})(1 - 4r_{W})^{1/2} \right)$$

$$\Gamma_{\Delta^{\pm\pm}} \Big|_{min} = \frac{1}{8\pi} \frac{M_{\Delta^{\pm\pm}} \bar{m}^{2}}{\hat{\xi}^{2} v_{\Phi}^{2}}$$

$$\hat{\xi}^{2} \equiv (2\sqrt{2}/g) r_{W}^{1/2} (\bar{m}/v_{\Phi})(1 - 4r_{W} + 12r_{W}^{2})^{-1/2}(1 - 4r_{W})^{-1/4}$$

$$\bar{m} = 0.05 \text{ eV} \qquad \Gamma_{\pm\pm}|_{min} \approx 6 \times 10^{-13} \text{ GeV} \qquad \tau|_{max} \approx 0.03 \text{ cm}$$
$$M_{\Delta^{\pm\pm}} = 200 \text{ GeV} \qquad \hat{\xi} \approx 6 \times 10^{-7} \qquad \tau|_{max} \approx 0.03 \text{ cm}$$

EJChun@KIAS

Neutrino mass matrix

$$|\Delta m_{31}^2| = 2.4 \times 10^{-3} \text{eV}^2$$

 $\Delta m_{21}^2 = 7.7 \times 10^{-5} \text{eV}^2$

 $\sin \theta_{23}^2 = 0.5$ $\sin \theta_{12}^2 = 0.3$

 $\sin\theta_{13}^2 < 0.04$

Undetermined hierarchy

CP even Hierarchies

- $||: m_1 < m_2 < m_3$
- $|N1: m_1 \simeq m_2 \gg m_3$
- IN2 : $m_1 = -m_2 \gg m_3$
- DG1 : $m_1 \simeq m_2 \simeq m_3$
- DG2: $m_1 \simeq m_2 \simeq -m_3$
- DG3: $m_1 \simeq -m_2 \simeq m_3$
- DG4: $m_1 \simeq -m_2 \simeq -m_3$

$$\begin{array}{l} \begin{array}{l} \begin{array}{l} & \text{Branching ratios and} \\ & \text{neutrino mass matrix} \end{array} \\ & B(ee): B(\mu\mu): B(\tau\tau): B(e\mu): B(e\tau): B(\mu\tau) \\ \hline & (\text{HI}) & 2r\sin^4\theta_3: \frac{1}{2}: \frac{1}{2}: \frac{1}{2}r\sin^22\theta_3: \frac{1}{2}r\sin^22\theta_3: 1 \\ \hline & (\text{IN1}) & 1: \frac{1}{4}: \frac{1}{4}: \frac{1}{16}r^2\sin^22\theta_3: \frac{1}{16}r^2\sin^22\theta_3: \frac{1}{2} \\ \hline & (\text{IN2}) & \cot^22\theta_3: \frac{1}{4}\cot^22\theta_3: \frac{1}{4}\cot^22\theta_3: 1: 1: \frac{1}{2}\cot^22\theta_3 \\ \hline & (\text{DG1}) & 1: 1: 1: \frac{1}{16}R^2r^2\sin^22\theta_3: \frac{1}{16}R^2r^2\sin^22\theta_3: \frac{1}{8}R^2 \\ \hline & (\text{DG2}) & \frac{1}{2}: \frac{1}{32}R^2: \frac{1}{32}R^2: \frac{1}{8}r^2\sin^22\theta_3: \frac{1}{8}r^2\sin^22\theta_3: 1 \\ \hline & (\text{DG3}) & \cot^22\theta_3: \frac{1}{4}\tan^2\theta_3: \frac{1}{4}\tan^2\theta_3: 1: 1: \frac{1}{2}\cot^2\theta_3 \\ \hline & (\text{DG4}) & \cot^22\theta_3: \frac{1}{4}\cot^2\theta_3: \frac{1}{4}\cot^2\theta_3: 1: 1: \frac{1}{2}\tan^2\theta_3 \end{array} \\ \end{array}$$

EJChun@KIAS

Characteristic BRs

- (HI) $B(\mu\mu): B(\tau\tau): B(\mu\tau) = \frac{1}{2}: \frac{1}{2}: 1$
- (IN1) $B(ee): B(\mu\mu): B(\tau\tau): B(\mu\tau) = 1: \frac{1}{4}: \frac{1}{4}: \frac{1}{2}$

• (IN2)
$$B(e\mu) : B(e\tau) = 1 : 1$$

• (DG1) $B(ee) : B(\mu\mu) : B(\tau\tau) = 1 : 1 : 1$

• (DG2)
$$B(ee) : B(\tau\tau) = 1 : 1$$

- (DG3) $B(e\mu) : B(e\tau) : B(\mu\tau) = 1 : 1 : \frac{1}{2} \cot^2 \theta_3$
- (DG4) $B(\mu\mu): B(\tau\tau): B(e\mu): B(e\tau) = \frac{1}{4}\cot^2\theta_3: \frac{1}{4}\cot^2\theta_3: 1:1$

EJChun@KIAS

Early LHC study

LHC with $L = 1000/\text{fb}_1$

$$N = (10^5 - 10^3)$$
 for $M_{\Delta^{\pm\pm}} = (100 - 450)$ GeV
 $N = 10$ for $M_{\Delta^{\pm\pm}} = 1000$ GeV

J.F. Gunion, C. Loomis and K.T. Pitts, hep-ph/9610237; B. Dion et. al., Phys. Rev. D59 (1999) 075006; A. Datta and A. Raychaudhuri, Phys. Rev. D62 (2000) 055002.

Recent LHC studies

Akeroyd, Aoki, hep-ph/0506176

Garayoa, Schwetz, 0712.1453 Kadastik, Raidal, Rebane, 0712.3912 Akeroyd, Aoki, Sugiyama, 0712.4019

Han, Mukhopadhyaya, Si, Wang, 0706.0441 Perez, Han, Huang, Li, Wang, 0805.3536

Assuming no tree spliting

Radiative mass splitting: $\Delta M \equiv M_{H^{++}} - M_{H^+} \approx 540$ MeV.

Note) Tree splitting $\Delta M \approx -\frac{\lambda_5}{g^2} \frac{M_W^2}{M_\Delta} \text{ (tree)}$

CP phase effect I

CP phase effect II

 $\phi_1 = 0, \phi_2 = 0 \sim 2\pi$

 $\phi_2 = 0, \phi_1 = 0 \sim 2\pi$

LHC H⁺⁺ production

Higgs Triplet model

Zee-Babu model

Type III seesaw

Franceschini et.al. 0805.1613

hyperchargeless triplet(s) of fermions: $\Sigma^+, \Sigma^0, \Sigma^-$

$$\Sigma = \begin{pmatrix} \Sigma^0 / \sqrt{2} & \Sigma^+ \\ \Sigma^- & -\Sigma^0 / \sqrt{2} \end{pmatrix}$$

 $\mathcal{L} = \mathcal{L}_{SM} + Tr[\overline{\Sigma}i\!D\!\!D\Sigma] - \frac{1}{2}Tr[\overline{\Sigma}M_{\Sigma}\Sigma^{c} + \overline{\Sigma^{c}}M_{\Sigma}^{*}\Sigma] - \tilde{\phi}^{\dagger}\overline{\Sigma}\sqrt{2}Y_{\Sigma}L + h.c.$ Majorana mass term
kinetic term: interactions with W and Z bosons
Yukawa interactions

Production at LHC

 $\begin{array}{l} q\bar{q} \to Z \to \Sigma^+ \Sigma^- \\ q\bar{q} \to W^\pm \to \Sigma^\pm \Sigma^0 \end{array}$

⇒ for $M_{\Sigma} = 250 \text{ GeV}$: 3000 triplet pairs for $\mathcal{L} = 3 \text{ fb}^{-1}$ ⇒ $\underset{M_{\Sigma} \sim 1.5 \text{ TeV}}{\longrightarrow}$ $M_{\Sigma} \sim 1.5 \text{ TeV}$ → to determine M_{Σ} , establish it is a fermion produced via gauge interaction

Decay of triplets

Franceschini, TH, Strumia '08

EJChun@KIAS

 $\Sigma^0 DM$

EJC, 0909.3408

- Thermal relic abundance suppressed by strong gauge interactions. Requires non-standard cosmology.
- m_{DM}>520 GeV, otherwise, annihilation to WW produces too much cosmic antiproton.
- Σ⁺ → Σ⁰ π⁺ with τ=5.5cm-6.3m depending on the mass splitting (tree+loop) → slowly-moving and highly-ionizing tracks disappearing inside a detector.
- Cascade Higgs from Bino decay: larger than 0.5fb for squark/gluino mass below 1 TeV → look for Higgs to bb at displaced vertices.

$$\tilde{B} \rightarrow \nu \tilde{\Sigma}^{0}, \ l^{\pm} \tilde{\Sigma}^{\mp}$$

 $h \nu \tilde{\Sigma}^{0}, \ h l^{\pm} \tilde{\Sigma}^{\mp}$ PB, EJC, 1007.2281

Conclusion

- Seesaw is a favorable mechanism to explain tiny neutrino masses.
- Supersymmetric TeV seesaw models have interesting DM connection.
- The model can be tested at LHC by observing LNV, LFV and/or exotic signatures associated with seesaw DM.