Implications of dimuon charged asymmetry at D0 on general SUSY models

National Central University (Dec. 10, 2010)

Pyungwon Ko (KIAS) with Jae-Hyun Park (DESY)

Prelude on D0 data

Semileptonic charge asymmetry

$$A_{\rm sl}^q \equiv \frac{\Gamma(\overline{B_q^0}(t) \to \mu^+ X) - \Gamma(B_q^0(t) \to \mu^- X)}{\Gamma(\overline{B_q^0}(t) \to \mu^+ X) + \Gamma(B_q^0(t) \to \mu^- X)},$$

for q = d, s.

D0 result on dilepton charge asymmetry :

$$A_{\rm SL} \equiv \frac{\Gamma(b\bar{b} \rightarrow \mu^+ \mu^+ X) - \Gamma(b\bar{b} \rightarrow \mu^- \mu^- X)}{\Gamma(b\bar{b} \rightarrow \mu^+ \mu^+ X) + \Gamma(b\bar{b} \rightarrow \mu^- \mu^- X)}$$
$$\simeq 0.506A_{\rm SL}^d + 0.494A_{\rm SL}^s$$
$$= -0.957 \pm 0.251 \pm 0.146\%$$

Prelude on D0 data II

- BaBar, Belle and CLEO : $A_{\rm SL}^d = (-4.7 \pm 4.6) \times 10^{-4}$
- So one gets $A_{\rm SL}^s = -0.0146 \pm 0.0075$
- SM prediction: $\sim -2 \times 10^{-5}$

	SM prediction	Data
A^d_{SL}	$(-4.8 \pm 1.0) imes 10^{-4}$	$(-4.7 \pm 4.6) \times 10^{-3}$
A^{s}_{SL}	$(+2.06\pm0.57) imes10^{-5}$	$(-1.46 \pm 0.75) \times 10^{-2}$
$A_{ m SL}^{ar b^-}$	$(-2.3\pm0.5) imes10^{-4}$	$(-9.57 \pm 2.51) \times 10^{-4}$

Can we understand such a large deviation (in SUSY models) ?

Contents

- Status of the SM and CKM matrix
- SUSY FCNC/CP Problems
- Earlier Literatures
- $s \to d$ transition: ϵ_K and ϵ' / ϵ_K
- $b \to d$ transition: $B_d \overline{B_d}$ mixing and $B \to X_d \gamma$
- $b \to s$ transition: $B_s \overline{B_s}$ mixing, $B \to X_s \gamma$ and $B_d \to \phi K_s$ CP asymmetry
 - $B_s \overline{B_s}$ mixing in SUSY models
 - Implications on SUSY (flavor) models
 - Concluding Remarks

My talk is based on the following papers

- "Fully supersymmetric CP violations in the kaon system." Seungwon Baek, J.H. Jang, P. Ko, Jae-hyeon Park, Phys.Rev.D62:117701,2000.
- "Gluino squark contributions to CP violations in the kaon system." Seungwon Baek, J.H. Jang, P. Ko, Jae-hyeon Park, Nucl.Phys.B609:442-468,2001.
- " $B^0 \overline{B^0}$ mixing, $B \to J/\psi K_s$ and $B \to X_d \gamma$ in general MSSM." P. Ko, Jae-hyeon Park, G. Kramer, Eur.Phys.J.C25:615-622,2002.
- " $B_d \rightarrow \phi K_s CP$ asymmetries as an important probe of supersymmetry." G.L. Kane, P. Ko, Hai-bin Wang, C. Kolda, Jae-hyeon Park, Lian-Tao Wang. Phys.Rev.Lett.90:141803,2003.

- " $B_d \rightarrow \phi K_s$ and supersymmetry." G.L. Kane, P. Ko, Hai-bin Wang, C. Kolda, Jae-hyeon Park, Lian-Tao Wang, Phys.Rev.D70:035015,2004.
- "Implications of the measurements of $B_s \overline{B_s}$ mixing on SUSY models." P. Ko, Jae-hyeon Park, Phys.Rev.D80:035019,2009.
- "Addendum to: Implications of the measurements of $B_s - \overline{B_s}$ mixing on SUSY models." P. Ko, Jae-hyeon Park.

CKM matrix

Mixing matrix connecting weak interaction eigenstates and mass eigenstates of quarks.

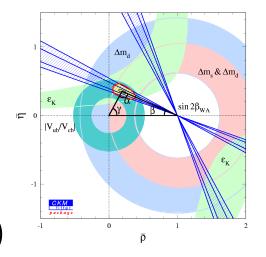
$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

CKM matrix is hierarchical and has one CP phase.

$$V = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

Unitarity condition, $V^{\dagger}V = VV^{\dagger} = 1$, yields unitarity triangles (UT).

Unitarity triangle on the (ρ, η) plane



- SM fit of (ρ, η)
- In the presence of new physics, constraints on (ρ, η) coming from one loop processes such as ϵ_K , Δm_d , and Δm_s , may be weaker
- Even if the shape of the UT is the same as this SM fit, there are processes with large deviations within SUSY models

SUSY FCNC/CP problem

- Supersymmetry is symmetry between a fermion and a boson, which has many nice motivations such as resolution of gauge hierarchy problem, gauge coupling unification, and dark matter. But SUSY must be broken if is exists.
- Supersymmetrizing SM doubles the particle spectrum, introducing more than 100 new parameters in the soft SUSY breaking sector.
- Soft SUSY breaking parameters are complex and flavor violating, and a generic supersymmetric standard model results in huge FCNC and CP violation.
- There must be some mechanism which controls FCNC and CP. This may be due to the SUSY breaking mediation mechanism and/or some flavor symmetry.

Digress-I

- In particular, quark and squark mass matrices are not diagonalized simultaneously in general

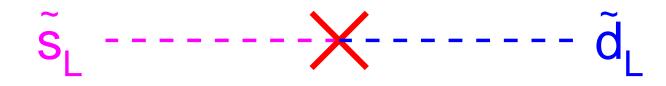
 → Gluino mediated FCNC, which could easily dominate the SM amplitudes (~ EW strength)
 → SUSY flavor problem
- Possible Solutions
 - Universality (at some scale)
 - Alignment using some flavor symmetries
 - Decoupling (Effective SUSY models): Cohen, Kaplan, Nelson

 \leftarrow Disfavored by muon (g-2)

- $A_{\rm SL}$ can tell something [Randall and Su, NPB (1999)]
- All the related observables should be considered altogether [Ko, Kramer, Park (2002)]

Digress-II

Mass insertion approximation is a useful tool to present flavor violation in the sfermion sector. $(\delta_{12}^d)_{LL}$: dimensionless transition strength from \tilde{s}_L to \tilde{d}_L .



- We can do the same for $b_A \rightarrow d_B$ and $b_A \rightarrow s_B$ (A, B = L, R: chiralities of superpartners of squarks)
- If $\delta \sim O(1)$, large FCNC and CPV with strong couplings
- SUSY FCNC/CP problem δ 's should be small $\lesssim 10^{-1} 10^{-3}$ depending on AB = LL, RR, LR, RL

Digress-III

- Current CKMology says New Physics should be flavor/CP blind to a very good approximation \rightarrow Better to have $\delta = 0$
- Even if we set δ 's to zero by hand at one energy scale, it is regerated by RG evolution. \rightarrow Cannot make it vanish at all scales
- Either we consider δ 's as parameters at EW scale, or assume δ 's vanish at some scale (messenger scale) where Soft SUSY breaking terms are generated
- mSUGRA makes an ad hoc assumption of universal scalar masses at M_{Planck} or M_{GUT} scale (δ 's are zero), and the δ 's are generated by RG evolution
- Can we do better than simply assuming it ?
- Yes (Gauge mediation, Anoamaly mediation, Dilaton dominated SUSY breaking ,....)

Basic Strategies

- Once again, "Flavor physics and CP violation" such as $B \rightarrow X_s \gamma$, $B_s \rightarrow \mu^+ \mu^-$, ϵ_K in SUSY models depend strongly on Soft SUSY Breaking sector, which is not well understood yet
- Without complete understanding of SUSY breaking, we have to rely on
 - Mass Insertion Approximation (MIA) to include gluino-squark loop contribution, OR
 - Work in some well motivated specific scenarios mSUGRA, GMSB, Dilaton Dominated SB (string theory), AMSB, ... where gluino-squark loop contributions (δ's) are under control, and study the implications on flavour physics

Implications for SUSY flavor models

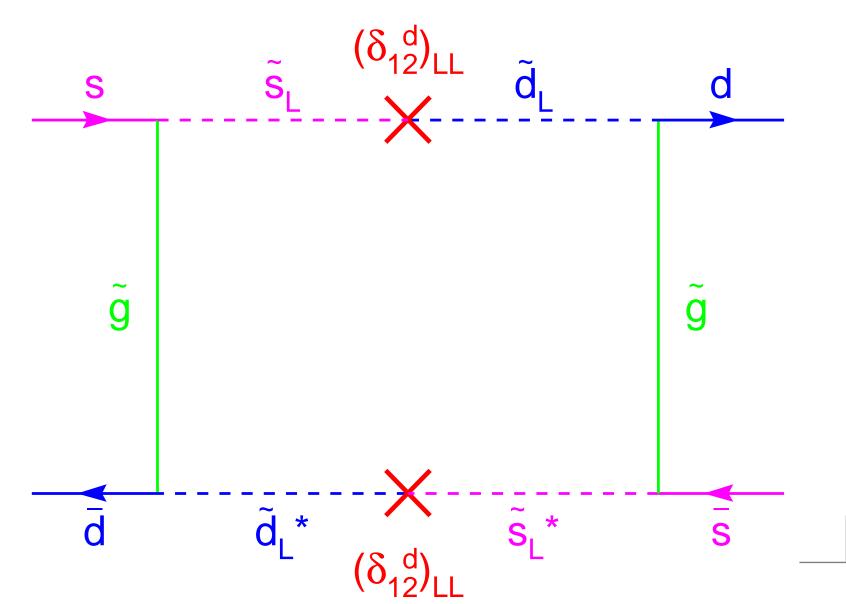
	00	22		
Model	$\left \delta_{d,LL}^{23}\right $	$\left \delta_{d,RR}^{23}\right $	$\tan\beta = 3$	$\tan \beta = 10$
LNS (A)	λ^2	λ^4	•	
NS ; CHM (A)	λ^2	1	×	×
NR (A)	λ^2	λ^8	•	
CHM (NA)	λ^2	$\lambda^{1/2}$	×	×
BHRR, PT (NA)	λ^2	λ^2	$\phi_{\scriptscriptstyle S}$	\checkmark
HM (NA)	λ^3	λ^5	•	•
PS (NA)	λ^2	λ^4	•	
CKN (D)	λ^2	$LL \gg RR$	•	\checkmark

Status of some models analyzed Randall and Su, for the wo different values of tan β . (A=Abelian, NA=Nonabelian, D=Decoupling) (·) incompatible with ϕ_s but safe otherwise; ϕ_s) compatible with ϕ_s and safe; ($\sqrt{}$) currently okay but langerous; (×) disfavored.

 $s \rightarrow d$ transition (12 Mixing) ϵ_K and $\operatorname{Re}(\epsilon' / \epsilon_K)$

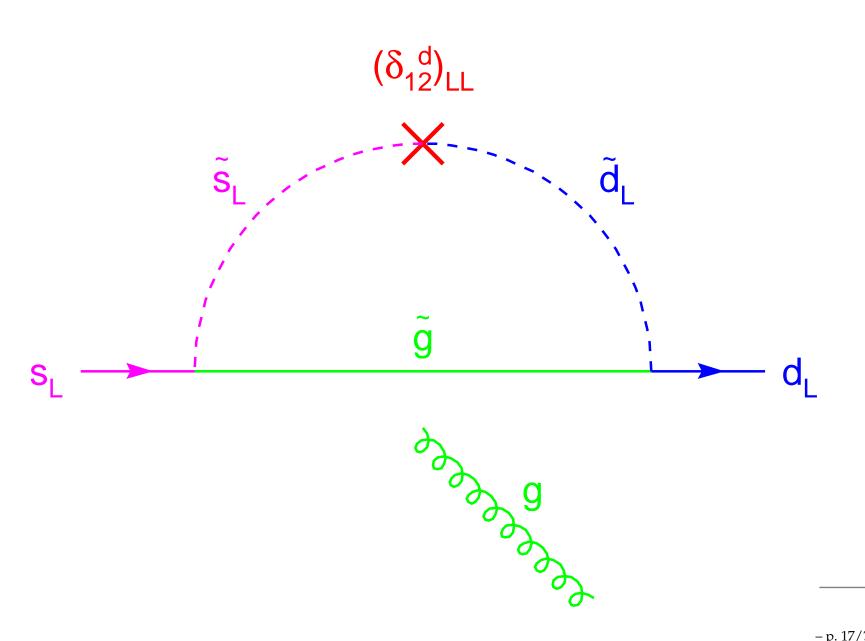
SUSY contributions to ϵ_K

Diagrams:



SUSY contributions to ϵ'/ϵ

Diagram :



Fully Supersymmetric CPV in the kaon system

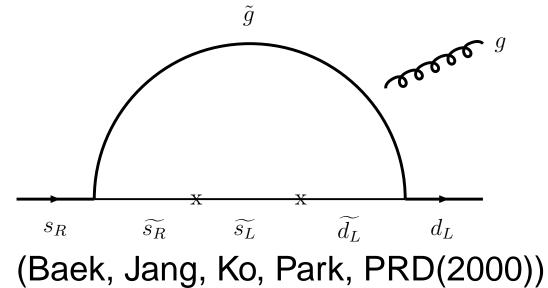
- CP violating parameters in the kaon system
 - $\epsilon_K = e^{i\pi/4} (2.280 \pm 0.013) \times 10^{-3}$: CP violation in the $K^0 \overline{K^0}$ mixing ($\Delta S = 1$)
 - $\operatorname{Re}(\epsilon'/\epsilon_K) = (18 \pm 4) \times 10^{-4}$: CP violation in the decay amplitude ($\Delta S = 1$)
- These two can be accommodated by the KM phase in the Glashow-Salam-Weinberg's standard model (SM)
 - SM prediction for $\operatorname{Re}(\epsilon'/\epsilon_K)$:
 - Buras et al. (before 1999) : 5×10^{-4}
 - Bertolini et al. : $5 30 \times 10^{-4}$
 - Large Hadronic Uncertainties \rightarrow Need Lattice QCD Calculations after all

Fully SUSY CPV in K

- Can SUSY explain such a large $\operatorname{Re}(\epsilon' / \epsilon_K)$? Answer : The folklore was "No" again before 1999, Until Masiero and Murayama showed that it is possible
- P. Ko et al.: Both ϵ_K and $\operatorname{Re}(\epsilon'/\epsilon_K)$ can be explained in terms of a single SUSY parameter $(\delta_{12}^d)_{LL}$, even if the KM phase is zero, without conflict with the e/n EDM's \rightarrow Fully SUSY CP violation is possible in the MSSM with a single CPV parameter $(\delta_{LL})_{12}$
- Key Point : Double mass insertion can be important at large $|\mu \tan \beta| \sim O(5-10)$ TeV
- Completely different from Masiero and Murayama's mechanism, and no problem with neutron EDM in our model

Double Mass insertion

- Double mass insertion can be important in the large $\tan \beta$ region
- Diagrams:

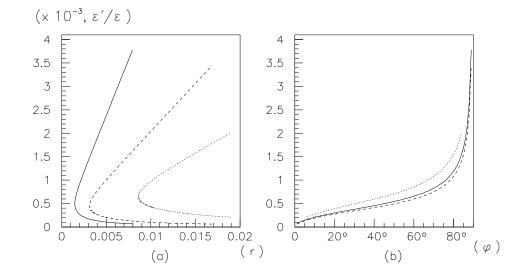


Fully SUSY CPV in K-Cont'd

- $|(\delta_{12}^d)_{LL}| \sim O(10^{-3} 10^{-2})$ with the phase $\sim O(1)$ saturates ϵ_K
- This parameter can lead to a sizable $\operatorname{Re}(\epsilon' / \epsilon_K)$ through the $(\delta_{12}^d)_{LL}$ insertion followed by the Flavor Preserving (FP) (LR) mass insertion

$$\propto (\delta_{22}^d)_{LR} \equiv m_s (A_s^* - \mu \tan \beta) / \tilde{m}^2 \sim O(10^{-2}),$$

- This FP LR insertion is generically present in any SUSY models
- $(\delta_{12}^d)_{LR}^{ind} = (\delta_{12}^d)_{LL} (\delta_{22}^d)_{LR} \sim 10^{-5}$ with O(1) phase
- The same mechanism can happen in $b \rightarrow s$ transitions



Different predictions for $K \rightarrow \pi \nu \nu$ from the SM

$b \rightarrow d$ Transition (13 Mixing) $B_d - \overline{B_d}$ mixing, and $B_d \rightarrow X_d \gamma$

1-3 Mixing : $B_d - B_d$ mixing, and $B_d \rightarrow X_d \gamma$

Ko, Kramer, Park, EJPC (2003)]

- Amp (tot) = Amp (SM) + Amp (SUSY: \tilde{g} -down squark) for $B^0 - \overline{B^0}$ mixing and $B_d \to X_d \gamma$
- Mass insertion approximation with $m_{\tilde{g}} = \tilde{m} = 500 \text{ GeV}$
- Scan over one of δ_{13}^d 's as well as $\gamma(\phi_3)$ (KM angle)

Constraints

$$\Delta m_d = (0.472 \pm 0.017) \text{ ps}^{-1}$$

 $\sin 2\beta_{J/\psi} = 0.79 \pm 0.10$
 $B(B \to X_d \gamma) < 1 \times 10^{-5}$

1-3 Mixing : Cont'd

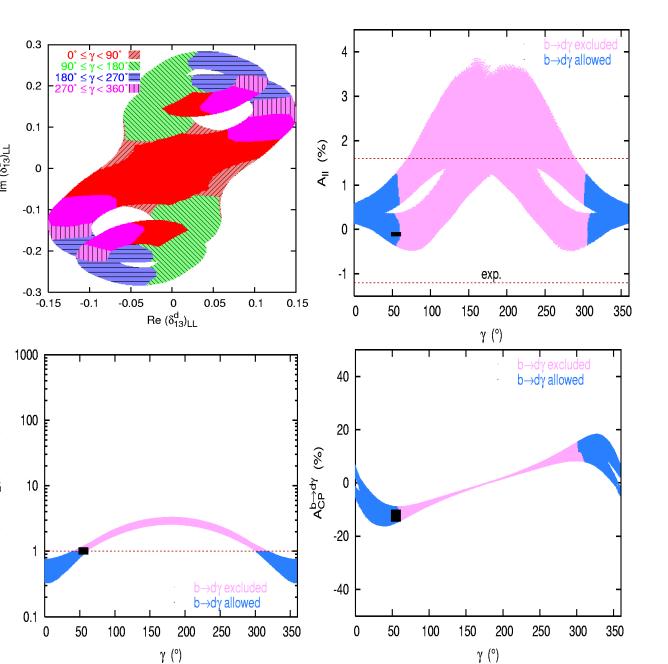
Predictions

$$A_{ll} \equiv \frac{N(BB) - N(\bar{B}\bar{B})}{N(BB) + N(\bar{B}\bar{B})} \approx \operatorname{Im}\left(\frac{\Gamma_{12} \approx \Gamma_{12}^{\mathrm{SM}}}{M_{12}^{\mathrm{SM}} + M_{12}^{\mathrm{SUSY}}}\right)$$
$$A_{\mathrm{CP}}^{b \to d\gamma} \equiv \frac{\Gamma(B \to X_d \gamma) - \Gamma(\overline{B} \to \overline{X_d} \gamma)}{\Gamma(B \to X_d \gamma) + \Gamma(\overline{B} \to \overline{X_d} \gamma)}$$

Data : $A_{ll}^{exp} = (-0.13 \pm 0.60 \pm 0.56)\%$ (BELLE)

- Consider two cases:
 - Single $(\delta_{13}^d)_{LL}$ insertion
 - Single $(\delta_{13}^d)_{LR}$ insertion

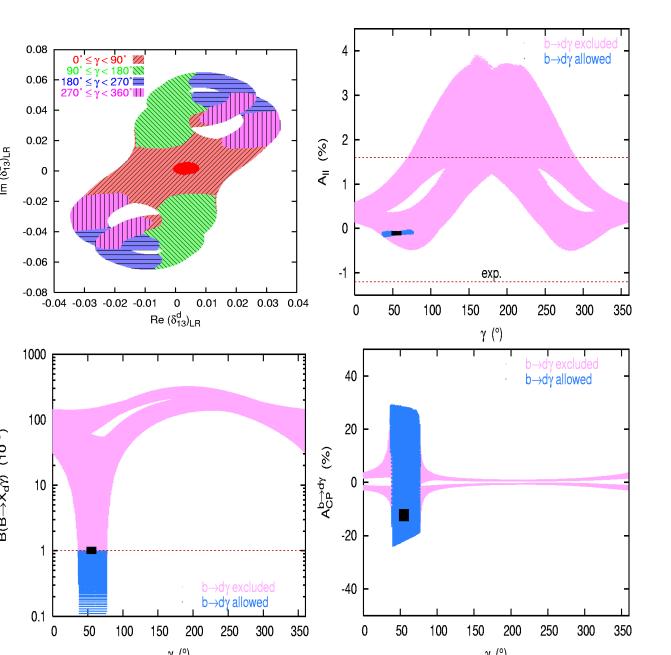
LL **insertion - I**



LL **insertion - II**

- Hatched region for $B(B \to X_d \gamma) > 1 \times 10^{-5}$
- A_{ll} can have sign opposite to that of SM value
- $B \to X_d \gamma$ strongly constrains $|(\delta_{13}^d)_{LL}| \leq 0.2$ $\sim -60^\circ \leq \gamma \leq 60^\circ$
- $-15\% \lesssim A_{\mathrm{CP}}^{b \to d\gamma} \lesssim +20\%$

LR insertion - I



LR insertion - II

- Hatched region for $B(B \to X_d \gamma) > 1 \times 10^{-5}$
- $B \to X_d \gamma$ even more strongly constrains $|(\delta^d_{13})_{LR}| \lesssim 10^{-2}$ $\sim 30^\circ \lesssim \gamma \lesssim 80^\circ$
- Nevertheless, $-25\% \lesssim A_{\rm CP}^{b \to d\gamma} \lesssim +30\%$
- Not much effect on A_{ll} .
- Can expect large deviations in $B \to X_d \gamma$ even if $\gamma = \gamma_{\rm SM}$

Implications of the recent measurements of $B_s - \overline{B_s}$ **mixing on SUSY models**

$B_s - \overline{B_s}$ mixing in SM

- Dominated by the box diagram with W t in the loop
- The mixing is almost real within the SM , and depend on V_{ts}
- Any phase in the mixing is a clear signal of physics beyond the SM
- $\Delta M_d / \Delta M_s$ depends on $|V_{td}|^2 / |V_{ts}|^2$ with less hadronic uncertainties than individuals
 - \rightarrow Important for CKM Phenomenology

First observations of $B_s - \overline{B_s}$ **mixing**

- The WA before 2006 : $\Delta M_s > 14.4 \text{ ps}^{-1}$
- **D** D0 : 17 $ps^{-1} < \Delta M_s < 21 ps^{-1}$
- CDF : $\Delta M_s = (17.33^{+0.42}_{-0.21}(\text{stat}) \pm 0.07(\text{sys})) \text{ ps}^{-1}$
- Constraint on V_{ts} from $\Delta M_d / \Delta M_s$ $|V_{td}| / |V_{ts}| = 0.208^{+0.008}_{-0.007} (\text{stat} + \text{sys})$
- The Belle result from $b \to d\gamma$: $|V_{td}|/|V_{ts}| = 0.199^{+0.026}_{-0.025}(exp)^{+0.018}_{-0.015}(theor)$
- Excellent agreement of two measurements
 Another test of the CKM paradigm and strong constraint on new physics scenarios

Model independent approach –I

$$B_q^0 - \overline{B_q^0}$$
 Mixing ($q = d$ or s) and Observables

•
$$M_{12}^q = (1 + h_q e^{2i\sigma_q}) M_{12}^{qSM}$$

• $\Delta M_q = |1 + h_q e^{2i\sigma_q}| M_{12}^{qSM}$
• $S_{\psi K} = \sin[2\beta + \arg(1 + h_d e^{2i\sigma_d})]$
• $S_{\psi \phi} = \sin[2\beta_s + \arg(1 - h_s e^{2i\sigma_s})]$

•
$$A_{\rm SL}^q = {\rm Im} \left[\frac{\Gamma_{12}}{M_{12}^q (1 + h_q e^{2i\sigma_q})} \right]$$

•
$$\beta_s = \arg\left[-(V_{ts}V_{tb}^*/(V_{cs}V_{cb}^*)\right] \approx 1^\circ$$

• Γ_{12}^q : the absorptive part of the $B_q^0 - \overline{B_q^0}$ mixing

Model independent approach – II

D0 result on semileptonic CP asymmetry :

$$A_{\rm SL} \equiv \frac{\Gamma(b\bar{b} \rightarrow \mu^+ \mu^+ X) - \Gamma(b\bar{b} \rightarrow \mu^- \mu^- X)}{\Gamma(b\bar{b} \rightarrow \mu^+ \mu^+ X) + \Gamma(b\bar{b} \rightarrow \mu^- \mu^- X)}$$
$$\simeq 0.506A_{\rm SL}^d + 0.494A_{\rm SL}^s$$
$$= -0.957 \pm 0.251 \pm 0.146\%$$

- BaBar, Belle and CLEO : $A_{
 m SL}^d = (-4.7 \pm 4.6) \times 10^{-4}$
- So one gets $A_{\rm SL}^s = -0.0146 \pm 0.0075$ SM prediction: $\sim -2 \times 10^{-5}$

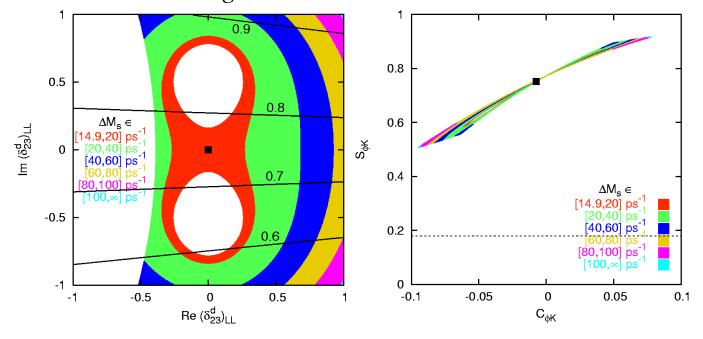
$B_s - \overline{B_s}$ mixing in SUSY models

- Additional contributions from $H^- t$, $\chi^- \tilde{U}_i$ and $\tilde{D}_i g(\tilde{\chi}^0)$
- In generic SUSY models, the squark-gluino loop is parametrically stronger, since it is strong interaction
- Assume that the dominant new physics contribution comes from down squark-gluino loop diagrams
- (see also Ciuchini and Silvestrini; Khalil, Endo and Mshima; Baek ...)
- See Ko, Kramer, Park, Eur.J.Phys. (2002) for $B_d \overline{B_d}$ mixing, $A_{\rm SL}^d$ and CPV in $B \to X_d \gamma$
- See Kane, Ko, Kolda, Park, Wang², PRL (2003) and PRD (2004) for $B_d \rightarrow \phi K_s$ and $B_s \overline{B_s}$ mixing and related issues

New Physics in $b \rightarrow s$ **Before the CDF/D0 measurements**

LL or RR-I (Kane,Ko,Kolda,Park,Wang²)

LL plots for $m_{\tilde{g}} = \tilde{m} = 400 \text{ GeV}$



• $(\delta_{23}^d)_{LL}$ can not significantly lower $S_{\phi K}$.

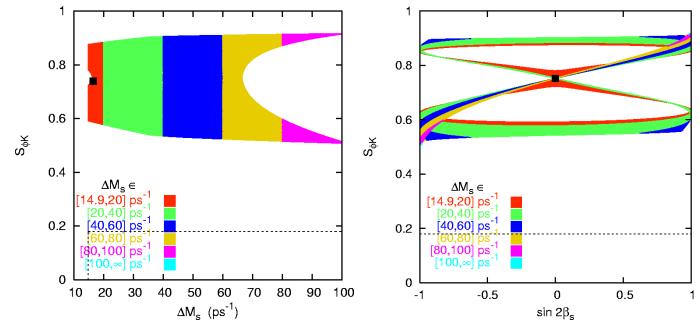
 $S_{\phi K}\gtrsim 0.05$ for $m_{ ilde{g}}= ilde{m}=250~{
m GeV}$

Updated Value: $S_{\phi K} = 0.34 \pm 0.21$ (FPCP04)

• Now $S_{\phi K}=0.47\pm0.19$ (Hazumi)

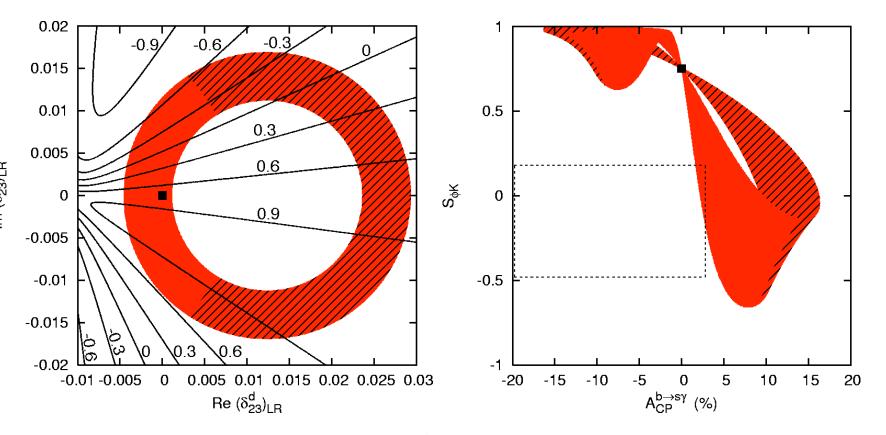
LL or RR-II

But large effects possible in $B_s - \overline{B}_s$ mixing Both in the modulus and the phase



- Large ΔM_s & CP asymmetry in $B_s \rightarrow J/\psi\phi$ \rightarrow Nice subjects at hadron machines
- RR is similar to LL except for $B \to X_s \gamma$.

LR for $m_{\tilde{g}} = \tilde{m} = 400$ GeV



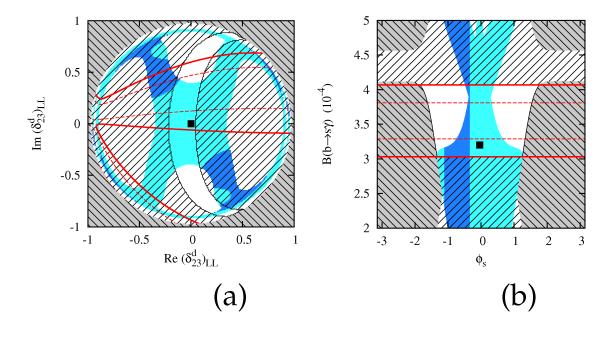
• $-0.6 < S_{\phi K} < 1$ for $|(\delta^d_{23})_{LR(RL)}| \sim 10^{-2}$

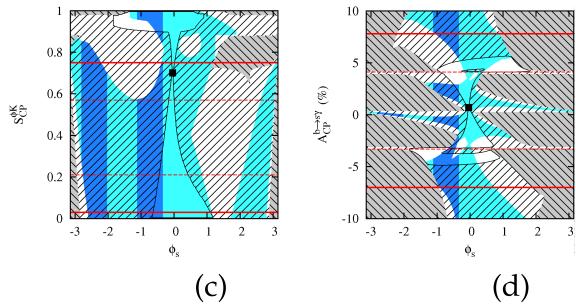
• $A_{CP}^{b \rightarrow s\gamma}$ can be large compared w/ SM prediction

• Not much effect on $B_s - \overline{B}_s$ mixing

After the CDF/D0 measurements

LL **insertion** (tan $\beta = 3$)

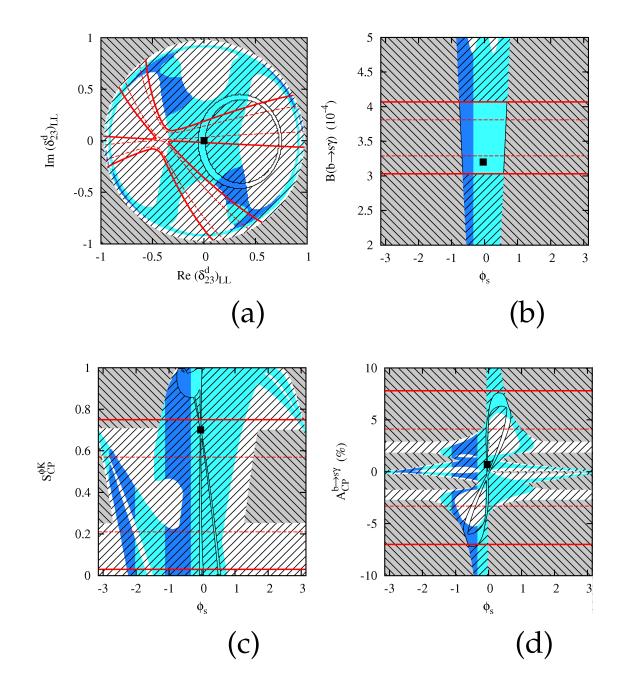




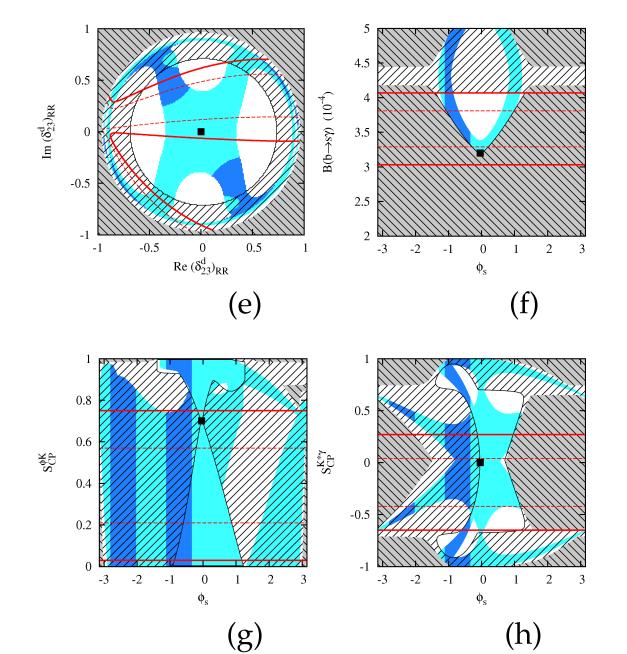
Captions

- Allowed regions on (a) (Re(\delta_{23}^d)_{LL}), Im(\delta_{23}^d)_{LL})), and correlation between \phi_s and each of (b) B(B \rightarrow X_s \gamma), (c) S_{\phi K}, and (d) A_{CP}^{b \rightarrow s \gamma}.
- The hatched gray region leads to the lightest squark mass < 100 GeV.
- The hatched region is excluded by the $B \rightarrow X_s \gamma$ constraint.
- The cyan region is allowed by ΔM_s .
- The blue region is allowed by the ΔM_s and ϕ_s .
- The black square is the SM point.
- In Fig. (a), bands bounded by red dashed and solid curves correspond to 1σ and 2σ ranges of $S_{\phi K}$, respectively.

LL **insertion** (tan $\beta = 10$)

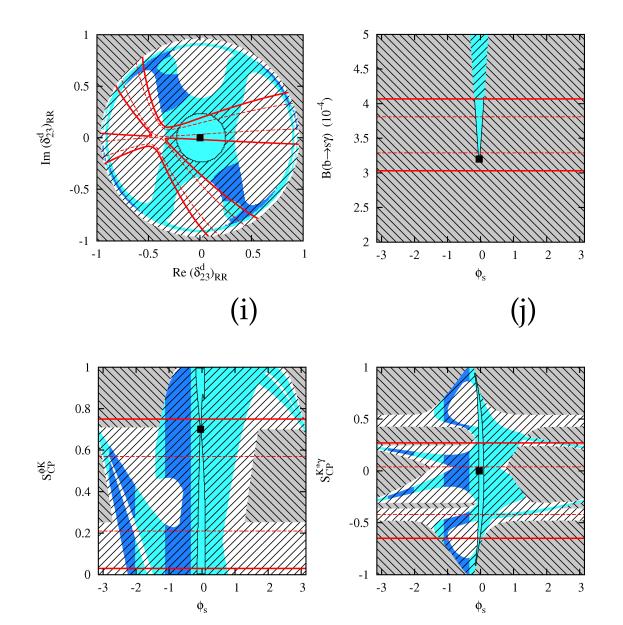


RR insertion (tan $\beta = 3$)



-p. 44/??

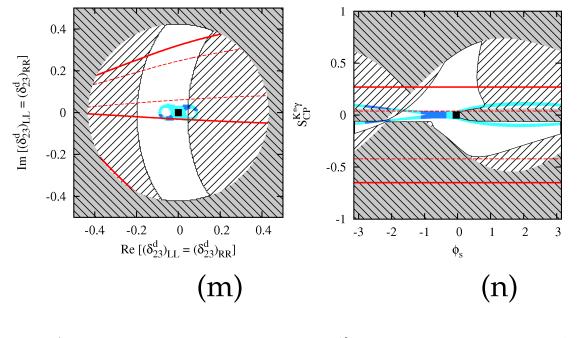
RR insertion (tan $\beta = 10$)

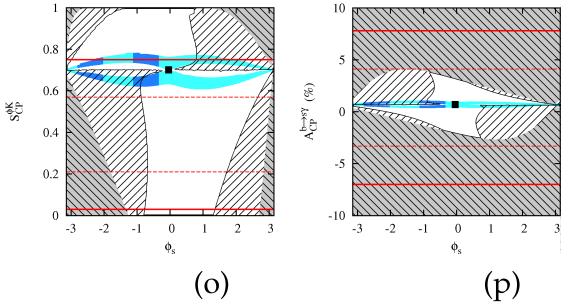


(k)

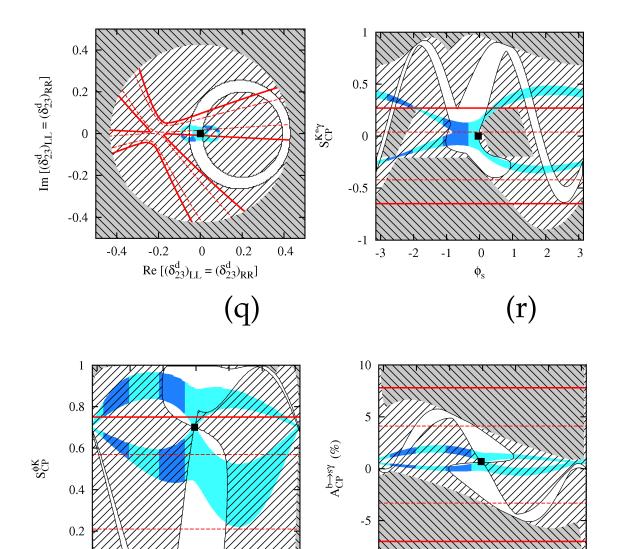
(1)

LL = RR case (tan $\beta = 3$)





LL = RR case (tan $\beta = 10$)



-10

-3

-2

-1

0

\$\$

2

1

(t)

3

////

1

(s)

2

3

0

-3

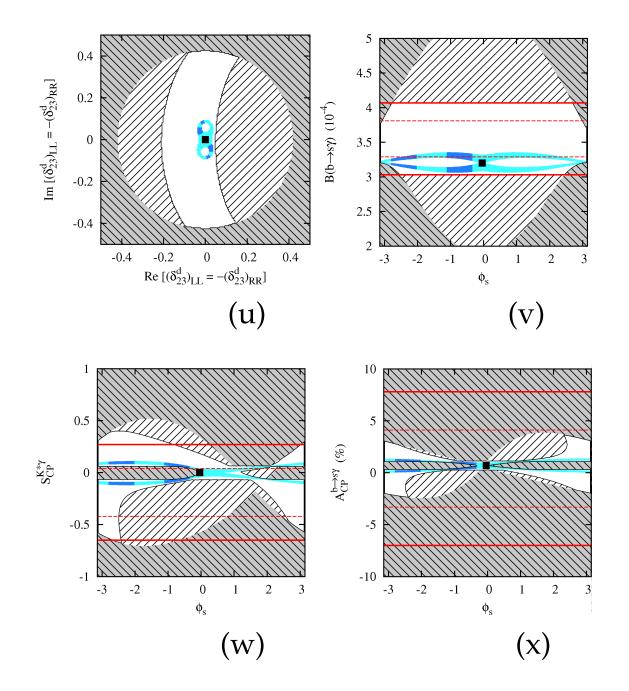
-2

-1

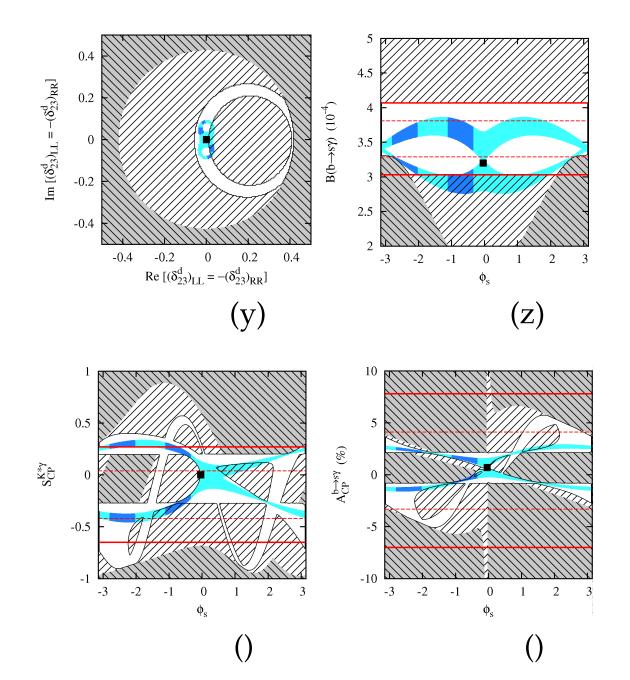
0

 $\phi_{\rm s}$

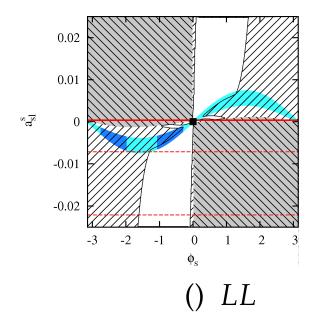
LL = -RR case (tan $\beta = 3$)

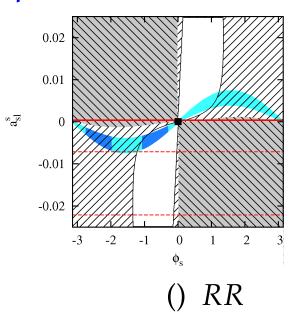


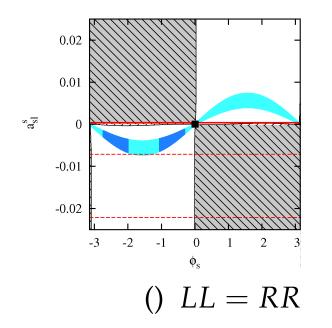
LL = -RR case (tan $\beta = 10$)

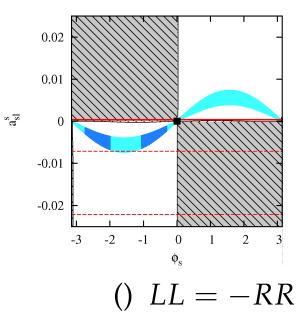


$a_{\rm SL}$ for $\tan \beta = 3$





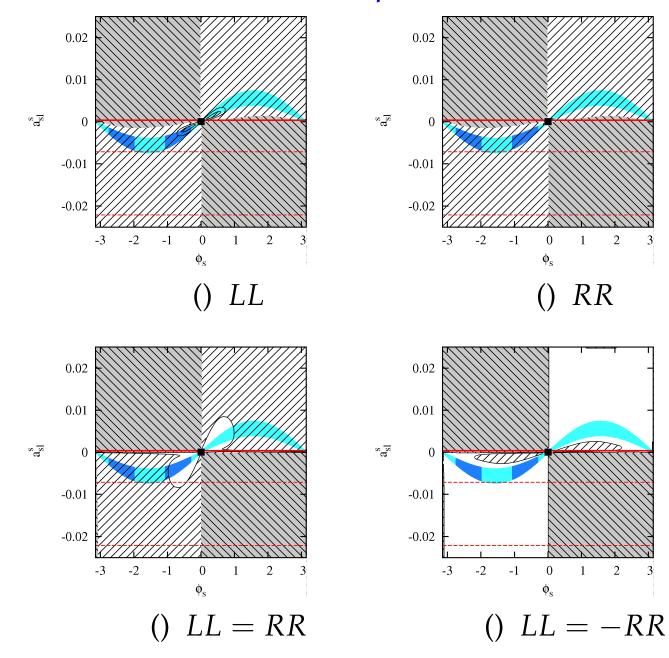




Captions

- The hatched gray region leads to the lightest squark mass < 100 GeV.
- The hatched region is excluded by the $B \rightarrow X_s \gamma$ constraint.
- The cyan region is allowed by ΔM_a .
- The blue region allowed both by ΔM_s and ϕ_s .
- The black square is the SM point.
- The red dashed and solid lines mark the 1σ and 2σ ranges of $a_{\rm SL}$, respectively.

$a_{\rm SL}$ for tan $\beta = 10$



3

3

Implications for SUSY models

- mSUGRA (?) or GMSB : Universal soft masses at some scale M_X ,..... → $\delta(M_X) = 0$
- \bullet δ 's are generated by RG evolutions
- For example, in mSUGRA,

$$(m_{LL}^2)_{ij}(\mu = M_{weak}) \simeq -\frac{1}{8\pi^2} Y_t^2 (V_{CKM})_{3i} (V_{CKM}^*)_{3j}$$
$$\left(3m_0^2 + a_0^2\right) \log(\frac{M_*}{M_{weak}})$$

- $(\delta^d_{LL})_{23} \simeq 9 \times 10^{-3} \text{ and } (\delta_{LL})_{13} \simeq 8 \times 10^{-3} \times e^{-i2.7}$
- $(\delta^d_{LL})_{23}$ is real, no CPV phase \rightarrow No effect on $S_{\phi K}$

δ_{RR} from SUSY GUT with Seesaw

For example, in SU(5)+RHN's, Moroi argues

$$(m_{\tilde{d}}^2)_{ij} \simeq -\frac{1}{8\pi^2} [Y_N^{\dagger} Y_N]_{ij} (3m_0^2 + A^2) \log \frac{M_*}{M_{\text{GUT}}}$$
$$\simeq -e^{-i(\phi_i^{(L)} - \phi_j^{(L)})} \frac{y_{\nu_k}^2}{8\pi^2} [V_L^*]_{ki} [V_L]_{kj} (3m_0^2 + A^2) \log \frac{M_*}{M_{\text{GUT}}}$$

•
$$|(\delta^d_{RR})_{23}| \simeq 2 \times 10^{-2} \left(\frac{M_{N_3}}{10^{14} \text{ GeV}}\right)$$
 with $O(1)$ phase

• And RG induced δ 's can be small enough to evade the constraint from $B_s - \overline{B_s}$ mixing, and the double mass insertion can induce effective RL insertion \rightarrow Can affect $S_{\phi K}$

Induced *LR* **or** *RL* **from Double Mass Insertion**

$$(\delta_{LR}^d)_{23}^{\text{ind}} = (\delta_{LL}^d)_{23} \times \frac{m_b(A_b - \mu \tan \beta)}{\tilde{m}^2}.$$

- $(\delta^d_{LL,RR})_{23} \sim 10^{-2} \rightarrow (\delta^d_{LR,RL})^{\text{ind}}_{23} \sim 10^{-2}$, if $\mu \tan \beta \sim 30 \text{ TeV.}$
- Natural if $\tan \beta$ is large ~ 40
- For larger *LL*, *RR* mixing, even smaller $\mu \tan \beta$ would suffice to induce the needed *LR*, *RL* mass insertions of a size $10^{-2} 10^{-3}$.
- $\delta_{LL,RR}$'s in SUSY flavor models are generically complex, the induced $(\delta_{LR}^d)_{23}^{ind}$ could carry a new CP violating phase leading to deviation in $S_{\phi K}$

Implications for SUSY flavor models

	-			
Model	$\left \delta_{d,LL}^{23}\right $	$\left \delta_{d,RR}^{23}\right $	$\tan\beta = 3$	$\tan\beta = 10$
LNS (A)	λ^2	λ^4	•	
NS ; CHM (A)	λ^2	1	×	×
NR (A)	λ^2	λ^8	•	
CHM (NA)	λ^2	$\lambda^{1/2}$	×	×
BHRR, PT (NA)	λ^2	λ^2	$\phi_{\scriptscriptstyle S}$	
HM (NA)	λ^3	λ^5	•	•
PS (NA)	λ^2	λ^4	•	\checkmark
CKN (D)	λ^2	$LL \gg RR$	•	\checkmark

Status of some models analyzed Randall and Su, for the wo different values of tan β . (A=Abelian, NA=Nonabelian, D=Decoupling) (·) incompatible with ϕ_s but safe otherwise; ϕ_s) compatible with ϕ_s and safe; ($\sqrt{}$) currently okay but langerous; (×) disfavored.

Digression on $(g-2)_{\mu}$ **in effective SUSY**

Hagiwara, Liao, Martin, Nomura, Teubner [arXiv:1001.5401]:

$$\Delta a_{\mu} = (31.6 \pm 7.9) \times 10^{-10}$$

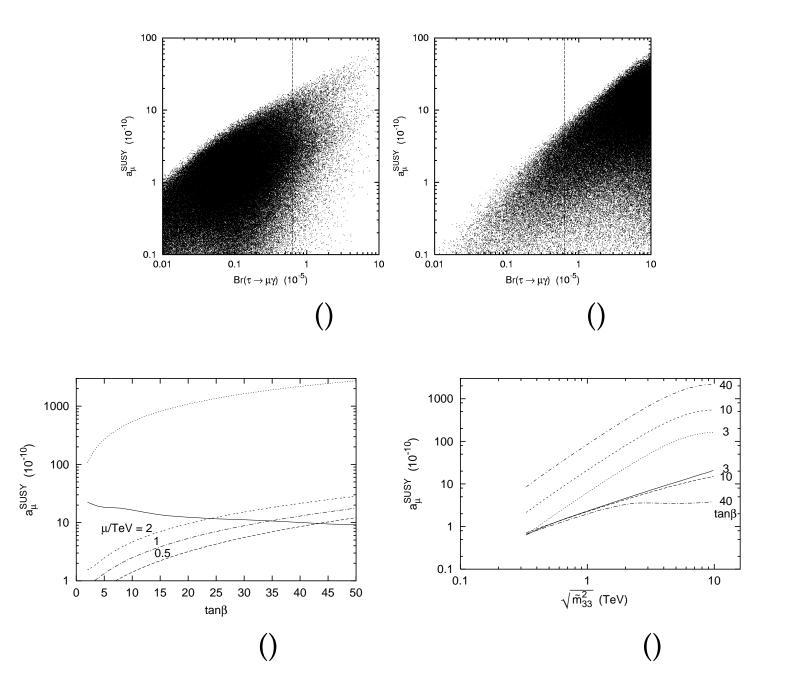
- Baek, Ko, Park: EPJC 24, 613 (2002)
 - Strong correlation between $B(\tau \to \mu \gamma)$ and $(g-2)_{\mu}$ in effective SUSY model

•
$$B(\tau \rightarrow \mu \gamma) < 4.4 \times 10^{-8}$$

SUVS < $2(0.6) \rightarrow 10^{-10}$ for $t = 0$

- $a_{\mu}^{\text{SUYS}} \lesssim 2(0.6) \times 10^{-10}$ for $\tan \beta = 3(30)$
- See plots

Plots for $(g-2)_{\mu}$ **in effective SUSY**



Conclusion

- $B_s \overline{B_s}$ mixing excludes some SUSY flavor models
 based on (non)abelian flavor symmetries
- The *LL* or *RR* insertions for small tan β case cannot be large as in the past (≤ 0.5)
- Large tan β case is strongly contrained by b → sγ (independent of m_A) and by B_s → μ⁺μ⁻ for light m_A;
 For moderately high tan β, O(1) value of φ_s tends to conflict with B → X_sγ in the four cases considered here
- The $LL = \pm RR$ case is even more strongly contrained by ΔM_s measurement
- The *LR* or *RL* insertions consistent with $b \rightarrow s\gamma$ is still OK with ΔM_s , since it does not affect the $B_s \overline{B_s}$ mixing; however for the same reason, it cannot make

- p. 59/??

Most important is to reach the experimental sensitivity to confirm/falsify the SM predictions for A_{SL}