FB asymmetry in tt production at CDF

Chang-Seong Moon, Soo-Bong Kim (Seoul National University)

on behalf of the CDF Collaboration

Kias Workshop (3/10/2011)

Table of Contents

- *CDF Experiment*
- Physics Motivation
- Prior Measurement
- Top pair reconstruction
- Latest Results
- Summary

Kias Workshop (3/10/2011)

CDF Experiment and Data

- Run I (1992~1996): ~110 pb⁻¹, 1.8 TeV
 Run II(2001~2010): ~7.0 fb⁻¹, 1.96 TeV
 - 1 km Radius Ring
 - 36 x 36 bunches, 396 ns spacing
 - 280 Billion protons/bunch
 - 80 Billion anti-p/bunch
 - *2 million collisions/sec*

	Run II
Delivered	9.6 fb ⁻¹
Recorded	8.0 fb ⁻¹ (83%)
Produced	7.0 fb ⁻¹ (76%)
Analyzed	5 fb ⁻¹

Kias Workshop (3/10/2011)

CDF Detector

The CDF II Detector

LO only: No forward-backward asymmetry

NLO prediction: Interference between LO and NLO

Also presence of new physics could make asymmetry

From Yuji's slide

Kias Workshop (3/10/2011)

Theoretical interest

- exotic gluons
 - massive chiral color
 - RS gluon
 - color sextets, anti-triplets
- IVB'
 - Z'
 - FV W'Z' t-channel
- FV scalars
- effective Lagrangians
- nice theoretical review by Cao et al. PRD 81,014016, arXiv:1003.3461
- model building must contend with
 - total σ in good agreement with SM
 - do/dM_{tt} in good agreement with SM

From Dan's slide

Kias Workshop (3/10/2011)

Prior measurements

- CDF, 1.9 fb⁻¹, inclusive, corrected to "parton-level"
 - tt rest frame $A^{t\bar{t}} = 0.24 \pm 0.14$
 - NLO QCD $A^{t\bar{t}} = 0.06 \pm 0.01$

PRL 101, 202001 (2008)

- lab (pp) frame $A^{p\overline{p}} = 0.17 \pm 0.08$
- NLO QCD $A^{p\overline{p}} = 0.04 \pm 0.01$
- D0, inclusive, background subtracted "data-level"
 - tt rest frame $A^{t\bar{t}} = 0.12 \pm 0.08$ 0.9 fb⁻¹ PRL 100, 142002 (2008) $A^{t\bar{t}} = 0.08 \pm 0.04$ 4.3 fb⁻¹ ICHEP 2010

From Dan's slide

Kias Workshop (3/10/2011)

Reconstruction of Top L+jets

 $l^{+} + \mathbb{E}_{T} + 4j + \ge 1 \ btag \rightarrow (l^{+} \upsilon b)(q\overline{q}\overline{b}) \rightarrow (W^{+}b)(W^{-}\overline{b}) \rightarrow t\overline{t}$

- Jet-parton assignment, $p_z(v)$ via minimum of simple χ^2
 - Constraints: M_W = 80.4 GeV/c2, Mt = 175 GeV/c², btag = b
 - Float jet p_t within errors

From Dan's slide

Kias Workshop (3/10/2011)

 $l^{+} + \mathbb{E}_{T} + 4j + \ge 1 \ btag \rightarrow (l^{+} \upsilon b)(q\overline{q}\overline{b}) \rightarrow (W^{+}b)(W^{-}\overline{b}) \rightarrow t\overline{t}$

- Jet-parton assignment, $p_z(v)$ via minimum of simple χ^2
 - Constraints: M_W = 80.4 GeV/c2, Mt = 175 GeV/c², btag = b
 - Float jet pt within errors

Kias Workshop (3/10/2011)

Dilepton channel

- *Two neutrino missing (6 unknown variables)*
- 6 constraints (M_W :2, M_t :2, MET:2)
- b-bbar ambiguity

→ Several (max 4) solutions x 2 comb.(b-bbar) with <u>no redundant constraint</u>.

Basic idea

One solution: ($\vec{p}_{\nu}, \vec{p}_{\overline{\nu}}$) $\Rightarrow p_z^{t\overline{t}}, p_T^{t\overline{t}}$, and $M_{t\overline{t}}$ Choose most likely solution from reconstructed $p_z^{t\overline{t}}, p_T^{t\overline{t}}$, and $M_{t\overline{t}}$

→ These three variables are mostly distributed by initial parton distribution function.

From Yuji's slide

Kias Workshop (3/10/2011)

We take one representative $(\vec{p}_{\nu}, \vec{p}_{\overline{\nu}}, E_b^{\text{guess}}, E_{\overline{b}}^{\text{guess}})$ which gives maximum likelihood in an event.

20

 10^{2}

10

O.

From Yuji's slide

10

400

500

600

700 80/ M_{...} (GeV/c⁴

Kias Workshop (3/10/2011)

-500

0

500

P,(tt) (GeV/c)

10

Chang-Seong Moon, Seoul National University

80

P_T(tt) (GeV/c)

100

Asymmetry of Top L+jets

tt frame

lab frame

Asymmetry of Top L+jets

Kias Workshop (3/10/2011)

• $A_{\rm obs} = 0.138 \pm 0.054 (\text{stat.})$

• Pred: $A_{\rm obs} = -0.022 \pm 0.022$

- $A_{\rm obs} = 0.138 \pm 0.054 (\text{stat.})$
- Pred: $A_{\rm obs} = -0.015 \pm 0.023$

Asymmetry of Top Dilepton

$$\begin{split} \Delta \eta_l \\ A_{sub} &= 0.212 \pm 0.073 (\text{stat.}) \pm 0.023 (\text{bkg.shape.}) \\ \Delta y_t \\ A_{sub} &= 0.205 \pm 0.073 (\text{stat.}) \pm 0.021 (\text{bkg.shape.}) \\ A_{true} &= 0.417 \pm 0.148 (\text{stat.}) \pm 0.053 (\text{bkg.shape}) \end{split}$$

Kias Workshop (3/10/2011)

Asymmetry in high/low Mtt (LJ)

Kias Workshop (3/10/2011)

Kias Workshop (3/10/2011)

- In high Mtt region, asymmetry looks larger.
- This is just rough estimation with only stat. error by hand. No bkg shape systematics is imcorporated.

Kias Workshop (3/10/2011)

Preliminary result of b-tagged Dilepton

 Measured asymmetry in lab and tt frames in 2 sigma excess over SM for both of L+jets and Dilepton channel.

L+jets channel For $M_{tt} > 450 \text{ GeV/c}^2$

$$A_{reco}^{tt} = 0.210 \pm 0.049, A_{parton}^{tt} = 0.475 \pm 0.112$$

Dilepton channel

$$A_{obs} = 0.138 \pm 0.054_{stat.}$$
$$A_{sub} = 0.205 \pm 0.073_{stat.} \pm 0.021_{bkg shape.}$$
$$A_{true} = 0.417 \pm 0.148_{stat.} \pm 0.053_{syst..}$$

• Att has a dependence on Δy , Mtt, especially L+jets channel.

Kias Workshop (3/10/2011)

Backup Slide

Kias Workshop (3/10/2011)

Systematic uncertainty (DIL)

δA_{true}	
0.043	Reduced due to S/B improvement
0.010	← New
0.010	μ^{-} efficiency as a function o
0.018	f η from Z+1jet sample sh
0.015	ows different asymmetry fr
0.008	om the prediction ($\Delta A=0.0$
0.011	10)
0.004	
0.053	
0.148	
0.157	
	δA _{true} 0.043 0.010 0.010 0.010 0.010 0.010 0.010 0.011 0.008 0.011 0.004 0.004 0.015

 $A_{\text{true}} = 0.417 \pm 0.148(\text{stat.}) \pm 0.053(\text{syst.})$

Kias Workshop (3/10/2011)

Systematic uncertainty (LJ)

Source	$M < 450~{\rm GeV}/c^2$	$M \geq 450~{\rm GeV}/c^2$
background size	0.017	0.032
background shape	0.003	0.003
JES	0.005	0.012
$\mathrm{ISR}/\mathrm{FSR}$	0.012	0.008
color reconnection	0.009	0.004
PDF	0.018	0.004
physics model	0.035	0.035
total	0.047	0.049