Top in tau and impact on the low mass Higgs sector at CDF

On behalf of Matteo Corbo, Aurore Savoy-Navarro and Stephan Lammel

Theoretical Interest

- Standard Model
 - Lepton universality in EW
- Standard Model extensions:
 - Adding two (or more) Higgs doublet fields
 - The models provide at least:
 - 1. Two parity even and one parity odd neutral Higgs particles
 - 2. A charged Higgs
- In the low mass regime top decay in H[±] competes with W channel
- In MSSM H[±] decay in tau becomes dominant with tan(β) > 1
- H[±] enhances top decay in tau
 - $tan(\beta) \approx 1 and tan(\beta) >> 1$
 - Deviation from SM predictions
- Top decay in tau test for SM
 - Less explored channel

M₊₊=120 GeV

- Previous analysis explored "High Pt Lepton" samples
 - With 20 GeV electrons or muons
- More acceptance in "Lepton plus isolated track"
 - Leptons with Pt > 8 GeV
 - Thus sensitive to tau into e/μ decays
 - "Isolated track" for tau preselection

Previous Studies

- Previous analysis done with small statistic
 - Tourneur, Savoy-Navarro (note 8627) 1 fb⁻¹
 - Amerio, Gresele, Lazzizzera (note 8443) with 311 pb⁻¹
 - Frisch, Levy (note 8287) with 335 pb⁻¹
- D0 latest result with 1 fb⁻¹
 - Phys. Lett. B 682, 278 (2009)
- Expecting 10 fb⁻¹ integrated luminosity soon available
 - Starting to be sensitive to small SM deviations in this channel
 - SM predictions ≈ 2500 events of top pair decay with hadronic tau

Tau Offline Reconstruction

- Tau decay modes
 - 35.2 % in leptons not separable from prompt leptons
 - 64.8 % in hadrons
 - One or three charged tracks + neutrals
 - Neutrals made mostly by π_0 's
- Standard CDF strategy for tau reconstruction:
 - Starting point narrow cluster few calorimetric towers
 - Higher Et tower, "seed tower"
 - Track pointing to the tower, "seed track"
 - "Seed track" as reference

- Signal cone
$$\theta_{sig} = \min\left(0.17, \frac{5.0 \operatorname{rad}/GeV}{E^{cl}}\right) \operatorname{rad}$$

- Cluster energy as indication of tau boost
- Signal tracks and π_0 's
- lso cone $\theta_{iso} = 0.52 rad$
- Isolation tracks and π_0 's for vetoing QCD
- Tau Reconstruted in the central region
 - In CDF tau momentum: π_0 's energy and track Pt

Tau Idetification

Electron removal •

	Skimming	
ξ'	< 0.1	\rightarrow Electron removal
E/P	< 0.4	ightarrow Muon removal
Et _{seedtwr}	>6 GeV	
Ntwr	<= 6	
Pt _{seedtrk}	>6 GeV	1
Et _{cluster}	>10 GeV	Energy, momentum cut
Ptvis	> 15.0 GeV	
∆Z	< 5 GeV	
CES Z	9 < Z _{CES} < 230 cm	
COT Ax Seg	>= 3	
COT St Seg	>= 2	
ρ _{cot}	< 140 cm	
M _t	< 1.8 GeV	\rightarrow Mass constraint
ΣPt_iso	< 2.0 GeV	
$\Sigma Et_{\pi 0 iso}$	< 1 GeV	 Isolation veto
Pt _{isotrk}	< 1.5 GeV	
N _{trksig}	1,3	
Q	1	

Triggers, Data Set

- Triggers
 - Central leptons: CMUP, CMX
 - Central isolated tracks
- Trigger track isolation: no 1.5 GeV tracks in the isolation annulus
- Low energy/momentum thresholds without prescaling
 - CMX after period 12 dinamicaly prescaled
- Current data sample 8.5 fb⁻¹
- Good run requirement
 - Good electromagnetic measurement (Without b-tagging no Silicon tracker required)
 - ~95% efficiency

Ex: up to trigger table 4_00_v-3

TAU_CMUP8_TRACK5_ISO TAU_CMX8_TRACK5_ISO TAU_ELECTRON8_TRACK5_ISO

Ex: current trigger table, 5_05_v-3

TAU_CMUP8_TRACK5_ISO TAU_CMX8_TRACK5_ISO_DPS TAU_ELECTRON8_TRACK5_ISO

Physical Backgrounds

- Selecting τ_h and e
 - Z →ττ
 - Di-boson production

Processes	σ	Expected in 8 fb ⁻¹
WW	11.7 pb	97
WZ	3.46 pb	21
ZZ	1.51 pb	5.4
$Z \rightarrow \tau_h \tau_e$	355 pb	9'700
tt → t_h + e	100 fb	72
$tt \rightarrow t_h + t_e$	20 fb	8.0

- Preselection for
 - 2 jets with corrected Et > 15 GeV and $|\eta| < 2.4$
 - MEt > 20 GeV
- MEt corrected for jets with:
 - Raw Et > 10 GeV
 - $|\eta| < 2.4$

Processes	Exp. Events in 8 fb ⁻¹
WW	2.6
WZ	3.8
ZZ	1.8
Ζ → ττ	210
$tt \rightarrow \tau_h + e$	57.6
tt $\rightarrow \tau_{h} + \tau_{e}$	6.4

Kinematic

- Met
 - Z into tau MEt in betweem the leptons

е

ወ

- In top pair preferentially opposite to electron —
- Angle between electron and MEt

Background with Fakes

- Background with misidentified objects (fakes)
 - Mainly from jet identified as taus
- In the electron and muon channels
 - W \rightarrow e/ μ + v + 3 jets
 - − Z/ γ^* → ee/µµ+ 3 jets
- Type of fakes
 - $e_f + \tau_f$ _ Starting from a sample of identified electrons and collecting
 - fake taus we can count for both contributions
 - $e + \tau_f$ $\tau + e_f$
- Probability of jet to pass the tau identification
 - Jet20, Jet50, Jet70, Jet100 samples
- Events without EW contribution
 - No ID electrons
 - No ID muons
 - MEt < max{10, 10+(SumEt-50)/20} GeV (Met < 20 GeV for high SumEt)
- Tau fakable objects definition
 - Offline tau objects with Et > 10 GeV
 - Electron and muon removal
 - $\xi' > 0.1$
 - E/P > 0.4
 - Geometrical fiduciality

Results

Statistics and Systematics

- Tau fake rate computed
 - Average between sample
 - With minimum χ^2 method
- Different jet samples give different fake rates
 - In the low energy region (Et < 50)
 - Motivation: three against two jet event topology
 - Better isolation in two jet topology (mostly in Jet 20)
 - Hard gluon emission can be the source of "third" jet
- Systematic uncertainty
 - If a fake rate is two standard deviations from the average (Standard deviation of the sample fake rate)

Fake Rate Average

Trigger Efficiency for Taus

- Trigger efficiency for tau candidates studied
 - Separate identification and treatment of inefficiency sources:
- We intend to accomplish an independent study
- Inefficiency of the tau "leg" starting from a sample of events already passing the lepton requirements
 - Complementary to previous studies
 - Sensible effects external at the trigger algorithm
- Starting from "Calibration Lepton" or "High PT Lepton" samples
 - At L1 same requirements
 - At L2:
 - Similar to "Electron + Iso. Track"
 - "Calibration Muon" similar, but more relaxed
 - Differences removed accessing to the L2 trigger data bank
 - At L3 similar requirements
 - We intend to set common offline cuts
- Three tau samples
 - Tau identified together with identified leptons
 - Tau identified together with a loose lepton not passing the tight identification
 - Tau identified together with a tight lepton of the same sign

Results (Electron Samples)

High Pt sample

Calibration sample

Conclusions

- We expect to improve the measurement of branching ratio of top pair decaying in tau
- We expect to measure the ditau component
- Tau selection tools under control
 - Jet misidentified as taus
 - Trigger efficiency (muon samples under study)
- Ready to compare distributions from data with signal and background expectations

Back Up

Electron ID

• Loosening:

- Energy and Pt
 - Include medium Et electron
 - Compatible with trigger requirements
- Full ID requirements validated through check with previous studies

	Tight electron ID
Region	CEM
Fiduciality	SMX fiducial
Et	> 20 GeV
Track Pt	>10 GeV
Track Z ₀	< 60 cm
COT Ax. Seg.	>3
COT St. Seg.	> 2
Conversion	= 0
Had/Em	< 0.055 + 0.0045xE
Isolation (Pt > 20 GeV)	< 0.1
Isolation (Pt < 20 GeV)	2 GeV
Lshr	< 0.2
E/P	< 2.0 (Pt > 50)
CES DZ	< 3 cm
CES qDX	-3 < qDX < 1.5 Qxcm
CES Strip c ²	c ² < 10

Muon ID

- Medium Pt muons
- Identification checked
 - comparison with previous result

	Cuts
P _T	>10 GeV
Z ₀	< 60 cm
Axial S.L.	>= 3
Stereo S.L.	>= 2
$ ho_{\text{COT}}$	< 140 cm (CMX only)
χ^2_{COT}	< 4
d ₀	0.2 cm

	Ρ _T > 20 GeV	P _T < 20 GeV
E ^{iso}	< 0.1 (relative)	< 2 GeV
E _{EM}	< 2 + max(0, 0.0115*(p-100)) GeV	< 2 GeV
E _{HAD}	< 6 + max(0, 0.028*(p-100)) GeV	< 3.5 + (P _T /8.0)GeV
CMU stub	∆x < 7 cm	$ \Delta x $ < 7 cm or χ^2_{CMU} < 9
CMP stub	∆x < 5 cm	$ \Delta x < 5 \text{ cm or } \chi^2_{CMP} < 9$
CMX stub	∆x < 6 cm	$ \Delta x < 6 \text{ cm or } \chi^2_{CMX} < 9$

Measurement

- Definition of loose electrons and muons
 - Choosing the tightest cuts between the trigger sample
 - Considering the tightest trigger path

	Loose muon
Stub	CMU + CMP
Pt	> 10 GeV (20 GeV)
Z ₀	< 60 cm
Rel. Iso. (Pt > 20 GeV)	< 0.2
Abs. Iso. (Pt < 20 GeV)	4 GeV
CMU stub	Dx < 15 cm
CMP stub	Dx < 20 cm

XFT_STEREO_CONFIRMATION = 1 requirement set using L2Databank

	Loose electron
Region	CEM
Et	> 10 GeV (20 GeV)
Track Pt	>8 GeV (10 GeV)
Track Z ₀	< 60 cm
Had/Em	< 0.055
Rel. Iso. (Pt > 20 GeV)	< 0.2
Abs. Iso. (Pt < 20 GeV)	4 GeV
Lshr	< 0.2
E/P	< 4.0 (Pt > 50)
CES DZ	< 5.0 cm
CES qDX	-3 < qDX < 3 cm