Impact on the Low Mass Higgs Sector

Aurore Savoy-Navarro, Matteo Corbo Stephan Lammel

KIAS Workshop, March 10th, 2011

t, tbar Production

- In a Standard Model world, Matteo would measure two cross-section times branching-ratio² that are identical to the dilepton and lepton+b-tag value:
 - $p,pbar \rightarrow t,tbar$

→ W⁺b, W⁻b → $\tau^+\nu b$, $\tau^-\nu b$ → $\tau_h\nu\nu b$, $[e\mu]\nu\nu\nu b$ → W⁺b, W⁻b → $\tau^+\nu b$, $[e\mu]\nu b$ → $\tau_h\nu\nu b$, $[e\mu]\nu b$

 $\sigma(pp \rightarrow tt) \times BR^{2}(W \rightarrow \tau v) \times BR(\tau \rightarrow [e\mu]vv) \times BR(\tau \rightarrow \tau_{h}v)$ $\sigma(pp \rightarrow tt) \times BR(W \rightarrow \tau v) \times BR(W \rightarrow [e\mu]v) \times BR(\tau \rightarrow \tau_{h}v)$

σ(pp→tt) = 7.5 pb BR(W→τv) = 11.3% BR(W→[eµ]v) = 10.6% BR(τ→τ_hv) = 64.8%

(if the direct W and τ cascade decays are distinguished)

CDF Offline Operation

Stephan Lammel, Fermilab CD

2011-Mar-10, page 2/5

Charged Higgs

- A charged Higgs may change this:
 t → H⁺b and H⁺ → τν
 H⁺ → t,bbar
 H⁺ heavier, ≥ 180 GeV/c²
- from experiments we know:
 m(H⁺) > 78.6 GeV/c²

(Type II, 2HDM)

- A charged Higgs appears in many new theories, any two Higgs-doubled SM extensions, all SUSY models.
- The MSSM Higgs sector is very restricted, at tree level all Higgs values are determined by two parameters (tan β , m_A)
- QCD and SUSY-QCD corrections to BR(t→H⁺b) are crucial and available for the interpretation

CDF Offline Operation

Stephan Lammel, Fermilab CD

2011-Mar-10, page 3/5

Higgs into Tau Decays

 In the charged Higgs mass range of interest to us, m(H+) < m(t), the BR(H⁺→τv) ≈ 1

so we are mixing a BR=1 to the BR(W $\rightarrow \tau v$) = 11.3% i.e. a strong perturbation

The tau from the charged Higgs decay has also a different polarization:

$$W^{-} \rightarrow \tau^{-}_{L} \overline{v}_{R}$$
$$H^{-} \rightarrow \tau^{-}_{R} \overline{v}_{R}$$

i.e. $P_{\tau}^{H} = +1$ and $P_{\tau}^{W} = -1$

 The τ-R and τ-L decay distributions are quite different, the most energetic particles from τ-L decay transverse polarized τ-R decay longitudinal polarized

CDF Offline Operation

Stephan Lammel, Fermilab CD

2011-Mar-10, page 4/5

Summary

- Matteo's top analysis gets naturally close to a charged Higgs search
 - it is attractive compared to the H⁺H⁻ cross section
 - it rounds up the top work nicely for Matteo and CDF
- CDF has played previously the measured "cross sections" in different top channels to set limits on charged Higgs parameters.
 - the analysis was based on 200 pb⁻¹ only
 - it was not tau specific
 - mainly probed inside the MSSM
- We have no time to loose, LHC resumed operation!

CDF Offline Operation

Stephan Lammel, Fermilab CD

2011-Mar-10, page 5/5