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Motivation-1:

From the theory view point the simplest and more appealing
(though still unconfirmed) possibility to describe neufrino masses is
the leading non-renormalizable SU(2)xU(1) invarjart operator,
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the effective theory is "nearly” renormalizable
the first effect of New Physics: neutrino masses and mixing angles!



Motivation-2:

L5 violates B-L by two units

- B-L violated, in general, when attempting to unify particle interactions (6UTs)
- global quantum numbers expected to be violated at some level by quantum
gravity effects

v as a window on GUT physics

15 independent indication of a new physical threshold
P around the GUT scale
- many 6UTs contain ve¢

- heavy v¢ exchange produces a specific version of L
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see-saw can enhance small mixing angles in M and iny, into the large ones
observed in v oscillations
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inferesting link to baryogenesis

- B-L violation welcome in baryognesis

- out-of-equilibrium, CP viclating decay of v© can drive baryogenesis through
leptogenesis



PNMS Matrix with A4

mechanism to generate TB mixing from A, . .
__———?keeps separate
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after &; breaking from <>, masses of charged leptons and of neutrinos
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can also be extended to the quark sector

[F, Hagedorn, Lin, Merlo 0702194,
Altarelli,F, Hagedern  08020090]
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symmetry breaking sector

the success of this program crucially depends on a correct

vacuum alignment
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New Physics at TeV scale-1:

without any extra assumptions

extended gauge symmetry

v masses additional d.o.f.
v oscillations like ve,
OvBp decay ? superheavy gauge bosons,
p decay ?
A
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difficult to realize additional tests of the high-energy theory

e.g. the (type I) see-saw

depends on many physical parameters: the double of those
3 (small) masses + 3 (large) masses describing (Lgy)+Ls:
3 (L) mixing angles + 3 (R) mixing angles 3 masses, 3 mixing angles

6 physical phases = 18 parameters and 3 phases



New Physics at TeV Scale-2:

additional assumption:
there is new physics at a scale M*(1+10) TeV <« <«p> «A

extended gauge symmetry

v masses - (g-2) discrepancy additional d.o.f.
v oscillations - dark matter like ve,
OvBp decay ? | - gauge coupling unification superheavy gauge bosons,
p decay ? - hierarchy problem
A
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|' scale

> additional tests of A, are possible here

the energy region close to M will be explored by LHC soon



Low energy Effective Lagrangian -1:

low-energy effective Lagrangian

at energies E<M, after integrating out the d.o.f. associated to the scale M
. € +f _uv .
L,= IFeCH (cr" F, )ﬁ{ (@)l +[4 - fermion]+h.c.+ ...

L.¢ local operator, still invariant under &; [by treating «p> as spurions]
[neglecting RGE effects, still controlled by <>, but not local in <p>]
- effects with 1/M? suppression can be observable

- flavor pattern in L ¢« controlled (up to RGE effects) by the same
SB parameters <> that control m, and m,

- in the basis where charged leptons are diagonal

) / electric dipole
IHI[-'/M«';D))]H d; moments
(g- 2)5. anomalous magnetic
Re[.ﬂf (<(p>)]” d; = > moments
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[4-fermion operators] other LFV transitions U—=eee TUpU T —>eee



Experimental Bounds:

- bounds on the scale M, from the present limits on d;, a;, Ryj,..

- correlations among dj, a;, R;;and 83 from the pattern <>

> charged lepton Yukawa couplings

[0(@)], = o, v+

v O(1) (complex) coefficients

d <1.6x107 e cm M >80 TeV 4> GEEZT; imately
d, <28x107" ecm M >80 GeV

da, <3.8x107" M > 350 GeV

0a, = 30 x 107" M =27 TeV | [rom et e

[warning: relation between the scale M and new particle
masses M' can be not trivial. In a weakly interacting theory
g M/4TTaM]



LFVIn A4 X.... -1:

In the basis
where charged

OFuy O’ O u?) leptons are
(@) =| 0wy Oty O’y | degorer

()(113) ()(“3) O(u) contribute to both
' M,; and a1 (i%))

up to O(1) coefficients R, =R, = R, independently from 9,

T—=uy T—=>¢y below expected future sensitivity
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R, <1l2x 1074(107%) = yve <1.2x107%(1.1x107") GeV™

i

u>0.001= M>10(30) TeV
u=0.05 = M->70200) TeV

probably above the region of interest for the (9-2), and for LHC
is this inescapable?



LFVInAg4 x... -2:

4-fermion operators

dominant LFV operators [no VEV/A suppressionl]

1 | stands for
. {—?c.?f.l‘zic.!!:- _2(””) several Erjdependen‘r
M M contractions, such as
ADUD. DD,
(D)5 (IDy5)...

selectionrule AL AL AL_==+2

T —uee T —e
BR(T — y*ee) | 107 [ 1 <107
BR(tT" —=e¢'u )J G M

again, probably above the region
M >15 TeV of interest for the (g-2), and for LHC
any way out?



sz (izj) from two sources

+ [other combinations

- NLO corrections to @t < );’A = (1,0,0) + ()(Hz)
E ¢5, H¢5‘ vanish]

- double flavon insertions of the type

in a SUSY version of the model, with SUSY softly broken, a chirality flip

requires an insertion of @y, at the LO in the SUSY breaking parameters.
Example:

e [P 2 ey, | @ 2
[d6y, ;;d( p: ;] [ a6, frd(f I) 02,y Moprsy

other insertions can give rise to a chirality flip, but are suppressed
by powers of (mgysy/L)
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if the only sources of chirality flip are fermion and sfer‘rnlon (LR) masses,
then there is no contribution to M (iz)) from & '11”5, s Q”.-,

[at LO in mg,cy] and the main effelt comes from @ralone

[we take this as a definition of SUSY case in the present context]




[5”' ((tp))]ﬁ in A, x... SUSYcase

O ) O uY) OF ™)) inthe basis
_ 3 : ) where charged
J’If(<§‘?>) =|O(tu”)  O(tu) O(tu”) | leptons are
0 0w O | e

of f-diagonal elements below the diagonal [JM(< ))] (! > j)
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4-fermion operators (SUSY case)
- - superpotential for matter fields vanishes

in the limit (VEV/A)=0 - Kahler potential become.:s
SU(3),xSU(3), symmetric
- - soft masses are flavour diagonal
1 .. .. | should come with extra (VEV/A)n
—eTuuw —) suppression in the low-energy effective
A M Lagrangian: lower bound on M relaxed



Minimal Flavour Violation -1:

Minimal Flavor Violation [MFV]  Gliions trnerein Teitor Wise 2008] -

Gf = S[’I(3)f X SU'(B)UC X ... the largest 6;
I=(3.1) e°=(3)
v =(3,3) G broken only by the
Q= “}; (6. Yukawa coupling of L¢y and Ls

y. and Y can be expressed in terms of lepton masses and
mixing angles

diag
me e A,
y, = N2 Y=—LU miU"

V }

diagonal elements [ﬂ{(@?»]ﬁ are of the same size as in A;x...
similar lower bounds on the scale M



MFV-02:

) Wl R _, +for normal hierarchy
[;»kf({(p})k =BOX )+ ' 7 for inverted hierarchy
/,
A
=«.__,6(”':.) s [ﬂ.m‘ U q{’ i _Am LU Jgf’fj]

a positive signal at MEG 10-11<R < 10-13:10- always be accommodated
[but for a small interval around 9,3%0.02 where R ,.=0]

non-observation of R;; can be accommodated by lowering A
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Comparison with MFV:

MFV [scale M can be of order 1 TeV]

both R <12x 10_11
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experimental
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SUSYXA,;; [scale M can be of order 1 TeV]



Conclusion:

- additional tests of A, models from LFV

generic prediction
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below expected future sensitivity

0.001 < u < 0.05 requires
M above 10 TeV

no match with

M above 15 Tev [MTifting (g=2),;
M can be much smaller, in the
range of interest for (g-2),

bound on M relaxed
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