
The 9th Summer Institute for Theoretical Physics

Introduction to Cosmology

Excercises
(Mostly taken from Ch. 2, 3 and 6 of the textbook “Modern Cosmology”, Scott Dodelson

(Academic Press, 2003))

1. Using the action principle, derive the Einstein equation from the Einstein-Hilbert action

SEH =
∫

d4x
√−g(κ−2R + LM),

where R is the Ricci scalar and LM is the matter Lagrangian.

2. The three-dimensional sphere (pseudo-sphere) can be embedded in a four-dimensional Eu-
clidean (Lorentzian) space as ±w2 + x2 + y2 + z2 = ±a2 (a2 > 0). Verify that the metric of a
three-dimensional space of constant curvature can be written as

dl2 = a2

(
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

)
,

where k = 0,±1. Introduce the rescaled radial coordinate r̄, defined by

r =
r̄

1 + kr̄2/4
,

and show that this metric can then be rewritten in explicitly isotropic form:

dl3 = a2 dx̄2 + dȳ2 + dz̄2

(1 + kr̄2/4)2
,

where
x̄ = r̄ sin θ cos φ, ȳ = r̄ sin θ sin φ, z̄ = r̄ cos θ.

3. For the Robertson-Walker metric, verify

Γ0
ij =

ȧ

a
g̃ij, Γi

0j = Γi
j0 =

ȧ

a
δi
j, Γi

jk =??,

where g̃ij is the spatial metric. Also verify that the Ricci tensor and the Ricci scalar are given
by

R00 = −3
ȧ

a
, Rij = (aä + 2ȧ2 + 2k)g̃ij, R = 6

(
ä

a
+

ȧ2

a2
+

k

a2

)
,

and derive the Friedmann equations.

4. Derive the conservation equation Tµν
;ν = 0 from the Einstein equation and discuss its physical

meaning.
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5. Convert the following quantities by inserting the appropriate factors of c, h̄, and kB:
• T0 = 2.725 K → eV
• ργ = π2T 4

0 /15 → eV4 and g cm−3

• 1/H0 → cm
• mP ≡ 1.2× 1019 GeV → K, cm−1, sec−1

6. (a) Compute the pressure of a relativistic species in equilibrium with temperature T . Show
that p = ρ/3 for both Fermi-Dirac and Bose-Einstein statistics.
(b) Suppose the distribution function depends only on E/T as it does in equilibrium. Find
dp/dT . A simple way to do this is to rewrite df/dT in the integral as −(E/T )df/dE and then
integrate the pressure integral by parts.
(c) Consider the entropy density s ≡ (ρ+p)/T . For a massless particle, p = ρ/3, so s = 4ρ/3T .
Express s as a function of T for both bosons and fermions (assumed massless) in equilibrium
with zero chemical potential. Show that the entropy density for a massive particle in equilibrium
(T ¿ m; µ = 0) is exponentially small.

7. An important parameter for CMB anisotropies is the sound speed at decoupling. This is
determined by the ratio of baryons to photons.
(a) Find

R ≡ 3ρb

4ργ

as a function of a. Evaluate it at decoupling. Your answer should depend on Ωbh
2.

(b) The sound speed of the combined photon/baryon fluid is

cs =

√
1

3(1 + R)
.

Use your answer from (a) to plot the sound speed at decoupling as a function Ωbh
2.

8. Consider the evolution of the free electron fraction governed by the equation

dXe

dt
= (1−Xe)β −X2

e nbα
(2)

where the ionization rate is typically denoted

β ≡ 〈σv〉
(

meT

2π

)3/2

e−ε0/T

and the recombination rate

α(2) ≡ 〈σv〉 = 9.78
α2

m2
e

(
ε0

T

)1/2

ln
(

ε0

T

)
.

ε0 = 13.6 eV is the binding energy of hydrogen atom. Throughout, take parameters Ωm = 1,
Ωb = 0.06, h = 0.5.
(a) Using as an evolution variable x ≡ ε0/T instead of time, rewrite the equation in terms of
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x and the Hubble rate at T = ε0.
(b) Find the final freeze-out abundance of the free electron fraction, Xe(x = ∞).
(c) Numerically integrate the equation from (a) from x = 1 down to x = 1000. What is the
final frozen-out Xe?
(d) Peebles argued that even captures to excited states would not be important except for the
fraction of times that the n = 2 state decays into two photons or expansion redshifts the Lyman
alpha photon so that it cannot pump up a ground-state atom. Qualitatively, he multiplied the
right-hand side of the equation by the correction factor,

C =
Λα + Λ2γ

Λα + Λ2γ + β(2)

where the two-photon decay rate is Λ2γ = 8.227 rmsec−1; Lyman alpha production is β(2) =
βe3ε0/4T ; and

Λα =
H(3ε)3

(8π)2
.

Do this and show how it changes your final answer. Now compare the freeze-out abundance
with the result of (c) and plot the evolution.

9. Suppose that there were no baryon asymmetry so that the number density of baryons exactly
equaled that of anti-baryons. Determine the final relic density of (baryons + anti-baryons). At
what temperature is this asymptotic value reached?

10. There is a fundamental limitation on the annihilation cross section of a particle with mass
m. Because of unitarity, 〈σv〉 must be less than or equal to 1/m2, give or take a factor of
order unity. Determine ΩX for a particle which saturates this bound, i.e., for a particle with
〈σv〉 = 1/m2. For what value of m is ΩX equal to 1? (Keep xf and g∗ equal to the nominal
values xf ∼ 10 and g∗ ∼ 100.)

11. Inflation also solves the flatness problem. This is the question of why the energy density
today is so close to critical.
(a) Suppose that

Ω(t) ≡ 8πGρ(t)

3H2(t)

is equal to 0.3 today, where ρ counts the energy density in matter and radiation (assumed zero
cosmological constant). From the Friedmann equation, plot Ω(t)− 1 as a function of the scale
factor. How close to one would Ω(t) have been back at the Planck epoch (assuming no inflation
took place so that the scale factor at the Planck epoch was of order 10−32)? This fine-tuning of
the initial conditions is the flatness problem. If not for the fine-tuning, an open universe would
be obviously open (i.e., Ω would be almost exactly zero today.
(b) Now show that inflation solves the flatness problem. Extrapolate Ω(t)− 1 back to the end
of inflation, and then through 60 e-folds of inflation. What is Ω(t) − 1 right before these 60
e-folds of inflation?

12. Consider a free, homogeneous scalar field φ with mass m. The potential for this field is
V = m2φ2/2. Show that, if m À H, the scalar field oscillates with frequency equal to its
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mass. Also show that its energy density falls off as a−3, so it behaves exactly like ordinary
non-relativistic matter.

13. Determine the predictions of an inflationary model with a quartic potential,

V (φ) = λφ4.

(a) Compute the slow roll parameters ε and δ in terms of φ.
(b) Determine φe, the value of the field at which inflation ends, by setting ε = 1 at the end of
inflation.
(c) To determine the spectrum, you will need to evaluate ε and δ at −kη = 1. Choose the
wavenumber k to be equal a0H0, roughly the horizon today. Show that the requirement−kη = 1
then corresponds to

e60 =
∫ N

0
dN ′ eN ′

(H(N ′)/He)

where He is the Hubble rate at the end of inflation, and N is defined to be the number of e-folds
before the end of inflation:

N ≡ ln
(

ae

a

)
.

(d) Take the Hubble rate to be a constant in the above with H/He equal to 1. This implies
that N ' 60. Turn this into an expression for φ. The simplest way to do this is to note that
N =

∫ te
t dt′H(t′) and assume that H is dominated by potential energy. Show that this mode

leaves the horizon when φ2 = 60m2
P /π.

(e) Determine the predicted values of n and nT .
(f) Estimate the scalar amplitude in terms of λ. As a rough estimate, assume that k3PΦ(k) for
this mode is equal to 10−8. What value does this imply for λ?
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Short Term Project: The Redshift - Luminosity Distance Relation

The best-known way to trace the evolution of the universe observationally is to look into
the redshift - luminosity distance relation [1, 2]. The well-measured quantity of a far distant
object is the redshift of light it emitted due to the expansion of the universe. The redshift z is
related to the scale factor a by

λ0

λ
≡ 1 + z =

a0

a
.

From now on, the quantity with the subscript 0 means the value at present. Another important
observational quantity is the distance to the object. There are several ways of measuring
distances in the expanding universe. The luminosity distance dL is defined by the relation

d2
L ≡

L

4πF
,

where L is the luminosity of the object and F is the measured flux from the object. For the
object whose luminosity is know in some way, we can determine its luminosity distance from
the measured flux.

What you will do in this project is to derive the relation between the redshift and the
luminosity distance in a few cosmological models and compare it with the data obtained from
the observations of type Ia supernovae.

The expanding universe is described by the FRW metic

ds2 = −dt2 + a2(t)

[
dr2

1−Kr2
+ r2

(
dθ2 + sin2 θdφ2

)]
,

where K = 0,±1 depending on the spatial curvature of the universe.

(1) Show that the measured flux at the origin from the object of luminosity L located at
r = r1 is given by

F =
L

4π(a0r1)2(1 + z)2
,

thus the luminosity distance to the object is dL = a0r1(1 + z). Consider why we have two
factors of (1 + z) in the numerator.

(2) r1 is a function of the time t at which the light we see today was emitted by the object.
From the fact that the light travels satisfying ds2 = 0, derive

r1 = fK(z) ≡



sin f(z), for K = +1,
f(z), for K = 0,
sinh f(z), for K = −1,

where

f(z) =
1

a0H0

∫ z

0

dz′

h(z′)
,
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with the Hubble parameter H = ȧ/a and h(z) = H(z)/H0.

(3) The scale factor a(t) satisfies the Friedmann equation

(
ȧ

a

)2

+
K

a2
=

1

3M2
P

∑

i

ρi,

where ρi is the energy density of each component that fills the universe. Assume that the
i-th component has the the equation of state pi = wiρi where wi is a constant. When wi =
1/3, 0, −1, it is called Radiation(i = R), Matter(i = M), and Cosmological Constant(i = Λ),
respectively. Then the energy density evolves as

ρi = ρi0

(
a

a0

)−3(1+wi)

.

The Friedmann equation is rewritten as

H2 = H2
0

[
ΩK(1 + z)2 +

∑

i

Ωi(1 + z)3(1+wi)

]
,

where Ωi ≡ ρi/3M
2
P H2

0 and ΩK = 1 − ∑
i Ωi. Using this equation, find the expression for the

luminosity distance dL = a0(1 + z)fK(z) as a function of the redshift z.

(4) For simplicity, we consider the flat universe (K = 0), filled with Matter and Cosmological
Constant. Note that ΩM + ΩΛ = 1 in this case. Develop the Mathematica code which does the
integration and using it, draw dL(z) as a function of z for the cases ΩΛ = 0, 0.3, 1, respectively.

(5) The type Ia supernovae are so bright that they can be observed at very high redshifts.
They have roughly a common luminosity independent of the redshift which is well calibrated by
their light curves. Hence they are very good standard candles, which can be used to measure
luminosity distances. Using the data given in Table 6 of Ref. [3], draw the figure like Figure
1 in which the predictions of cosmological models and the observational data are compared.
Note that the luminosity distance data are given as distance moduli

µ0 = m−M = 5 log

(
dL

Mpc

)
+ 25,

where apparent magnitude m and absolute magnitude M are logarithmic measure of flux and
luminosity, respectively.
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Figure 1: The luminosity distance H0dL versus the redshift z for a flat cosmological model,
compared with the observational data. Taken from Ref. [4]
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