Why SCET?

- Advantage in understanding a physical system with energetic particles ($B \rightarrow \pi \pi, \pi K, \cdots$, deep inelastic scattering, Drell-Yan process)
- Separate consideration of collinear and soft interactions
- Easy to implement factorization
- Can apply rigorous effective field theoretic methods like operator product expansion, renormalization group

Basic ideas of SCET $T_{n^{A}=(t, 0,0,-1)}^{n^{\beta}(1,0,1)}$

momentum of energetic particle $n^{2}=\bar{n}^{2}=0, n \cdot \bar{n}=2$

$$
p^{\mu}=\frac{n^{\mu}}{2} \bar{n} \cdot p+p_{\perp}^{\mu}+\frac{\bar{n}^{\mu}}{2} n \cdot p \sim \mathcal{O}(Q)+\mathcal{O}(Q \lambda)+\mathcal{O}\left(Q \lambda^{2}\right) \quad \lambda= \begin{cases}\mathcal{O}\left(\sqrt{\Lambda_{\mathrm{QCCD}} / Q}\right), & \mathrm{SCET}_{\mathrm{I}} \\ \mathcal{O}\left(\Lambda_{\mathrm{QCD}} / Q\right), & \mathrm{SCET}_{\mathrm{II}}\end{cases}
$$

ultrasoft particle $p_{u s}^{\mu}=\left(\bar{n} \cdot p_{u s}, p_{u s, \perp}, n \cdot p_{u s}\right) \sim Q\left(\lambda^{2}, \lambda^{2}, \lambda^{2}\right)$

$$
\text { soft particle } p_{s}^{\mu}=\left(\bar{n} \cdot p_{s}, p_{s, \perp}, n \cdot p_{s}\right) \sim Q(\lambda, \lambda, \lambda) \quad \lambda \sim \frac{p_{\perp}}{\bar{n} \cdot p}
$$

*Interaction with ultrasoft particles do not alter the scaling of collinear momenta.
*Soft momenta put the collinear particle off-shell and should be integrated out.
*We will call usoft (ultrasoft) momenta as soft momenta.

Effective field theory

- Integrate out the degrees of freedom of order Q.
- The dynamics describes the fluctuation of order $Q \lambda$ or $Q \lambda^{2}$.
- Match the coefficients between the full and the effective theory.
- Construct the RG eq. to determine the running in the effective theory.

The full QCD Lagrangian $\quad \mathcal{L}_{Q(\mathrm{QCD}}=\bar{\psi} i \phi \psi-\frac{1}{4} G_{\mu \nu} G^{\mu \nu}$
Decompose the collinear momentum into a label momentum and a residual momentum．

$$
\begin{aligned}
& \begin{aligned}
p^{\mu} & =\tilde{p}^{\mu}+k^{\mu} \text { where } \tilde{p}^{\mu}=\frac{n^{\mu}}{2} \bar{n} \cdot p+p_{\perp}^{\mu} \quad \xi_{n, p}=\frac{\eta \eta \hbar}{4} \psi_{n, p ;} \quad \xi_{\bar{n}, p}=\frac{\eta \hbar}{4} \psi_{n, p},{ }^{-i \tilde{p} \cdot x} \psi_{n}(x)
\end{aligned} \\
& \psi(x)=\sum_{\tilde{p}} e^{-i \bar{p} \cdot x} \psi_{n, p}(x) \\
& =\sum_{\tilde{p}} e^{-i \bar{p} \cdot x}\left(\frac{\underline{\phi} \bar{p}}{4}+\frac{\not \hbar h}{4}\right) \psi_{n, p}(x) \\
& \begin{array}{l}
\frac{\phi 巾}{4} \xi_{n, p}=\xi_{n, p}, \quad 巾 \xi_{n, p}=0, \\
\frac{\phi h}{4} \xi_{\bar{n}, p}=\xi_{\bar{n}, p}, \quad \bar{\phi} \xi_{\bar{n}, p}=0 .
\end{array} \\
& =\sum_{\bar{p}} e^{-i \bar{p} \cdot x}\left(\xi_{n, p}(x)+\xi_{\bar{n}, p}(x)\right)
\end{aligned}
$$

From now on，summation over label momenta will be omitted，with the understanding that each term conserves the label momenta．

$$
A^{\mu}=A_{c}^{\mu}+A_{s}^{\mu}+A_{u s}^{\mu} \quad A_{c}^{\mu}=\sum_{\tilde{q}} e^{-i \tilde{q} \cdot x} A_{n, q}(x)
$$

$$
\begin{aligned}
& \mathcal{L}=\bar{\xi}_{n}{ }_{2}^{\frac{\hbar}{n}} n \cdot i D \xi_{n}+\bar{\xi}_{n}\left(\phi_{\perp}+i D_{\perp}\right) \xi_{\bar{n}} \\
& +\bar{\xi}_{\bar{n}} \frac{\not \dot{h}}{2}(\bar{n} \cdot p+i \bar{n} \cdot D) \xi_{\bar{n}}+\bar{\xi}_{\bar{n}}\left(p_{\perp}+i D_{\perp}\right) \xi_{n} \\
& =\bar{\xi}_{n}\left[n \cdot i D+g n \cdot A_{n}\right. \\
& \xi_{\bar{n}} \text { is a small component. } \\
& \xi_{n}=\frac{1}{\bar{n} \cdot p+i n \cdot D}\left(\phi_{1}+\phi_{1}\right) \frac{\pi}{2} \xi_{n} \\
& \left.+\left(p_{\perp}+i D_{\perp}+g A_{n, \perp}\right) \frac{1}{\bar{n} \cdot p+\bar{n} \cdot i D+g \bar{n} \cdot A_{n}}\left(p_{\perp}+i D_{\perp}+g A_{n, \perp}\right)\right] \frac{\hbar_{2}}{\frac{\mu}{2}} \xi_{n} \\
& \left(\bar{\xi}_{n}+\bar{\xi}_{\bar{n}}\right) i \varnothing\left(\xi_{n}+\xi_{\bar{n}}\right)=\bar{\xi}_{n} i \not D \xi_{n}+\bar{\xi}_{n} i \not D \xi_{n} \\
& +\xi_{n} i D \xi_{n}+\bar{\xi}_{n} i D \xi_{n} \\
& \xi_{n}\left(\theta_{\perp}+i D_{\perp}\right) \frac{1}{\bar{n} \cdot p+i n \cdot D}\left(D_{\perp}+i D_{\perp}\right) \frac{K}{2} \xi_{n}
\end{aligned}
$$

Expand this in powers of λ and g.

Power counting

h_{v}	ξ_{n}	$\bar{n} \cdot A_{n}$	$A_{n, \perp}$	$n \cdot A_{n}$	A_{s}
λ^{3}	λ	λ^{0}	λ	λ^{2}	λ^{2}

Gauge symmetries

- $\operatorname{SU}(3)$ gauge symmetry in full QCD
- Various subgroups of gauge symmetries: collinear, soft, usoft gauge symmetries
Collinear gauge symmetry

$$
\partial^{\mu} U \sim Q\left(1, \lambda, \lambda^{2}\right), \quad U(x)=\sum_{Q} e^{-i Q \cdot x} U_{Q}
$$

fields	collinear	soft	usoft
ξ_{n}	$U \xi_{n}$	ξ_{n}	$V_{u s} \xi_{n}$
A_{n}^{μ}	$U A_{n}^{\mu} U^{\dagger}+U\left[i \mathcal{D}^{\mu} U^{\dagger}\right] / g$	A_{n}^{μ}	$V_{u s} A_{n}^{\mu} V_{u s}^{\dagger}$
q_{s}	q_{s}	$V_{s} q_{s}$	$V_{u s} q_{s}$
A_{s}^{μ}	A_{s}^{μ}	$V_{s}\left(A_{s}^{\mu}+\mathcal{P}^{\mu} / g\right) V_{s}^{\dagger}$	$V_{u s} A_{s}^{\mu} V_{u s}^{\dagger}$
$q_{u s}$	$q_{u s}$	$q_{u s}$	$V_{u s} q_{u s}$
$A_{u s}^{\mu}$	$A_{u s}^{\mu}$	$A_{u s}^{\mu}$	$V_{u s}\left(A_{u s}^{\mu}+i \partial^{\mu} / g\right) V_{u s}^{\dagger}$
W	$U W$	W	$V_{u s} W V_{u s}^{\dagger}$
S	S	$V_{s} S$	$V_{u s} S V_{u s}^{\dagger}$
Y	Y	Y	$V_{u s} Y$

$\chi_{n}=W^{\dagger} \xi_{n}$ is collinear gauge invariant.

Define the operator $\overline{\mathcal{P}}$
$f(\overline{\mathcal{P}})\left(\phi_{q_{1}}^{\dagger} \cdots \phi_{q_{m}}^{\dagger} \phi_{p_{1}} \cdots \phi_{p_{n}}\right)=f\left(\bar{n} \cdot p_{1}+\cdots+\bar{n} \cdot p_{n}-\bar{n} \cdot q_{1}-\cdots-\bar{n} \cdot q_{m}\right)\left(\phi_{q_{1}}^{\dagger} \cdots \phi_{q_{m}}^{\dagger} \phi_{p_{1}} \cdots \phi_{p_{n}}\right)$
Define the Wilson line operator as $W=\left[\sum_{\text {perm }} \exp \left(-g \frac{1}{\overline{\mathcal{P}}} \overline{\bar{n}} \cdot A_{n}\right)\right]$.

\otimes^{Γ}	+ perms		
			$f\left(\overline{\mathcal{P}}+g \bar{n} \cdot A_{n}\right)=W f(\overline{\mathcal{P}}) W^{\dagger}$
			Wilson line operator

$$
\left.W=\sum_{m=0} \sum_{\text {perm }} \frac{(-g)^{m}}{m!} \frac{\bar{n} \cdot A_{n, q_{1}} \cdots \bar{n} \cdot A_{n, q_{m}}}{\bar{n} \cdot q_{1} \bar{n} \cdot\left(q_{1}+q_{2}\right) \cdots \bar{n} \cdot\left(\sum q_{i}\right)^{2}} T^{a_{m}} \cdots T^{a_{1}} W_{n}(x)=P \exp \left(i g \int_{-\infty}^{x} d s \bar{n} \cdot A_{n}(s \bar{n})\right),\right\} \begin{aligned}
& \\
& S(x)=P \exp \left(i g \int_{-\infty}^{x} d s n \cdot A_{s}(s n)\right), \\
& Y(x)=P \exp \left(i g \int_{-\infty}^{x} d s n \cdot A_{u s}(s n)\right) .
\end{aligned}
$$

Usoft factorization

collinear fermion

It is related to the path-ordered exponential

$$
Y(x)=P \exp \left(i g \int_{-\infty}^{x} n \cdot A_{u s}(n s) T^{a}\right)
$$

(This will be discussed more in detail later.)
Collinear fermions are decoupled from usoft gluons.

collinear gluon

$$
\begin{gathered}
y^{a b}=\delta^{a b}+\sum_{m=1}^{\infty} \sum_{\text {perm }} \frac{(i g)^{m}}{m!} \frac{n \cdot A_{u s}^{a_{1}} \cdots n \cdot A_{u s}^{a_{m}}}{n \cdot k_{1} n \cdot\left(k_{1}+k_{2}\right) \cdots n \cdot\left(\sum_{i=1}^{m} k_{i}\right)} f^{a_{m} a x_{m-1} \cdots} \cdots f^{a_{2} x_{2} x_{1}} f_{1}^{a_{1} x_{1} b} \\
\mathcal{Y}^{a b}(x)=\left[P \exp \left(i g \int_{-\infty}^{x} d s n \cdot A_{u s}^{e}(n s) \tau^{e}\right)\right]^{a b} \quad\left(\mathcal{T}^{e}\right)^{a b}=-i f^{e a b} \\
A_{n}^{\mu}=A_{n}^{b, \mu} T^{b}=A_{n}^{(0) a, \mu} \mathcal{Y}^{b a} T^{b}=A_{n}^{(0) a, \mu} Y T^{a} Y^{\dagger}=Y A_{n}^{(0) a, \mu} Y^{\dagger} \\
W=\left[\sum_{\text {perm }} \exp \left(-g \frac{1}{\overline{\mathcal{P}}} Y \bar{n} \cdot A_{n}^{(0)} Y^{\dagger}\right)\right]=Y W^{(0)} Y^{\dagger}
\end{gathered}
$$

Note that $Y T^{a} Y^{\dagger}=Y^{b a} T^{b}$. Collinear gluons are also decoupled.

The SCET Lagrangian is written as

$$
\begin{aligned}
& \mathcal{L}_{0}=\bar{\xi}_{n}\left[n \cdot i D+g n \cdot A_{n}+\left(\mathbb{P}_{\perp}+g A_{n, \perp}\right) W \frac{1}{\overline{\mathcal{P}}} W^{\dagger}\left(\not \mathbb{P}_{\perp}+g A_{n, \perp}\right)\right] \frac{\bar{\hbar}}{\frac{1}{2}} \xi_{n} \\
& =\bar{\xi}_{n}^{(0)} Y^{\dagger}\left[i n \cdot D+g Y n \cdot A_{n}^{(0)} Y^{\dagger}\right. \\
& \left.+\left(\not P_{\perp}+g Y A_{n, \perp}^{(0)} Y^{\dagger}\right) Y W^{(0)} Y^{\dagger} \frac{1}{\overline{\mathcal{P}}} Y W^{(0) \dagger} Y^{\dagger}\left(\mathcal{P}_{\perp}+g Y A_{n, \perp}^{(0)} Y^{\dagger}\right)\right] \frac{1}{\frac{1}{d}} Y \xi_{n}^{(0)} \\
& =\bar{\xi}_{n}^{(0)}\left[Y^{\dagger} n \cdot i D Y+g n \cdot A_{n}^{(0)}+\left(\mathbb{P}_{\perp}+g A_{n, \perp}^{(0)}\right) W^{(0)} \frac{1}{\overline{\mathcal{P}}} W^{(0) \dagger}\left(\mathbb{P}_{\perp}+g A_{n, \perp}^{(0)}\right)\right] \frac{\frac{1}{2}}{2} \xi_{n}^{(0)} \\
& =\bar{\xi}_{n}^{(0)}\left[n \cdot i \partial+g n \cdot A_{n}^{(0)}+\left(\mathcal{P}_{\perp}+g A_{n, \perp}^{(0)}\right) W^{(0)} \frac{1}{\overline{\mathcal{P}}} W^{(0) \dagger}\left(\mathcal{P}_{\perp}+g A_{n, \perp}^{(0)}\right)\right] \frac{\underline{d}}{2} \xi_{n}^{(0)} \\
& \rightarrow \bar{\chi}_{n}\left[n \cdot i \partial+g n \cdot A_{n}+W^{\dagger}\left(\mathscr{p}_{\perp}+g A_{n, \perp}\right) W \frac{1}{\overline{\mathcal{P}}} W^{\dagger}\left(\mathcal{D}_{\perp}+g A_{n, \perp}\right) W\right] \frac{{ }^{\frac{1}{2}}}{2} \chi_{n} .
\end{aligned}
$$

$\mathcal{L}_{1}=\bar{\chi}_{n}\left[W^{\dagger} i D_{\perp} W_{\overline{\bar{p}}}^{1} W^{\dagger}\left(\mathcal{P}_{\perp}+g A_{n, \perp}\right) W+W^{\dagger}\left(\mathcal{P}_{\perp}+g A_{n, \perp}\right) W \frac{1}{\overline{\mathcal{P}}} W^{\dagger} i D_{\perp} W\right]^{\frac{1}{2}} \chi_{n} . \quad \begin{aligned} & \text { Completely decoupled } \\ & \text { from usoft interactions }\end{aligned}$
collinear gauge-invariant blocks $\quad \chi_{n}=W^{\dagger} \xi_{n}, W^{\dagger}\left(\mathscr{P}_{\perp}+g A_{n, \perp}\right) W, W^{\dagger} i D_{\perp} W$

Soft Wilson lines

The Fourier transform is given by $Y(x)=P \exp \left[i g \int_{-\infty}^{x} d s n \cdot A_{s}(n s)\right]$.
Proof

$$
n \cdot A(x)=\frac{1}{2 \pi} \int d n \cdot q e^{-i n \cdot q \bar{x}} n \cdot A_{s}(n \cdot q),(\bar{x}=\bar{n} \cdot x / 2),
$$

$$
n \cdot A_{s}(n \cdot q)=\int d \bar{x} e^{i n \cdot q \bar{x}} n \cdot A_{s}(x) .
$$

At order $\mathrm{g} \quad-\frac{g}{2 \pi} \int d n \cdot q \frac{e^{-i n \cdot q \bar{x}}}{n \cdot q+i 0} n \cdot A_{s}(n \cdot q)$

$$
=-\frac{g}{2 \pi} \int_{\infty}^{\infty} d \bar{y} \int d n \cdot q \frac{e^{i n \cdot q(\bar{y}-\bar{x})}}{n \cdot q+i 0} n \cdot A_{s}(\bar{y})=i g \int_{\infty}^{\bar{x}} d \bar{y} n \cdot A_{s}(\bar{y})
$$

At order g^{2}

$$
\begin{aligned}
& \frac{1}{n \cdot \mathcal{R}} g n \cdot A_{s} \frac{1}{n \cdot \mathcal{R}} g n \cdot A_{s} \rightarrow \int \frac{d n \cdot q_{1} d n \cdot q_{2}}{(2 \pi)^{2}} e^{-i n \cdot\left(q_{1}+q_{2}\right) \bar{x}} \frac{g n \cdot A_{s}\left(n \cdot q_{2}\right) g n \cdot A_{s}\left(q_{1}\right)}{\left(n \cdot\left(q_{1}+q_{2}\right)+i 0\right)\left(n \cdot q_{1}+i 0\right)} \\
& =\int d \bar{y} d \bar{z} \int \frac{d n \cdot q_{1} d n \cdot q_{2}}{(2 \pi)^{2}} e^{i n \cdot q_{1}(\bar{y}-\bar{x})} e^{i n \cdot q_{2}(\bar{z}-\bar{x})} \frac{g n \cdot A_{s}(\bar{z}) g n \cdot A_{s}(\bar{y})}{\left(n \cdot\left(q_{1}+q_{2}\right)+i 0\right)\left(n \cdot q_{1}+i 0\right)} \\
& =\int d \bar{y} d \bar{z} g n \cdot A_{s}(\bar{z}) g n \cdot A_{s}(\bar{y}) \int \frac{d n \cdot q_{1}}{2 \pi} \frac{e^{i n \cdot q_{1}(\bar{y}-\bar{x})}}{n \cdot q_{1}+i 0} \int \frac{d n \cdot q_{2}}{2 \pi} \frac{e^{i n \cdot q_{2}(\bar{z}-\bar{x})}}{n \cdot\left(q_{1}+q_{2}\right)+i 0} \\
& =(-i)^{2} \int d \bar{y} d \bar{z} g n \cdot A_{s}(\bar{z}) g n \cdot A_{s}(\bar{y}) \theta(\bar{x}-\bar{z}) \theta(\bar{z}-\bar{y})=(-i)^{2} \int_{-\infty}^{\bar{x}} d \bar{z} g n \cdot A_{s}(\bar{z}) \int_{-\infty}^{\bar{z}} d \bar{y} g n \cdot A_{s}(\bar{y}) \\
& =\frac{(-i)^{2}}{2!} \int_{-\infty}^{\bar{x}} d \bar{z} \int_{-\infty}^{\bar{x}} d \bar{y} P\left[g n \cdot A_{s}(\bar{z}) g n \cdot A_{s}(\bar{y})\right]
\end{aligned}
$$

For the m-th term,

$$
\left[\frac{1}{n \cdot \mathcal{R}+i 0} g n \cdot A_{s}\right]^{m} \rightarrow \frac{(-1)^{m}}{m!} \int_{-\infty}^{\bar{x}} d \bar{y}_{1} \cdots d \bar{y}_{m} P\left[g n \cdot A_{s}\left(\bar{y}_{1}\right) \cdots g n \cdot A_{s}\left(\bar{y}_{m}\right)\right]
$$

I.I

11.

