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Lecture 1



Prerequisites

One semester course in Quantum Field Theory.
(tree-level QED including 2-2 scattering process)

Lie algebra of SU(N). 

References

Special volume of Journal of Physics A
“Scattering Amplitudes in Gauge Theories”

A good starting point is [L. Dixon 1105.0771]



Scattering amplitude

S
out,in

= hout| ˆS|ini

scattering operator
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What is scattering amplitude?



Use of scattering amplitudes
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Example: 2 to m-particle differential cross section



Scattering amplitudes in gauge theories - history

QED (1940’s)

Non-abelian gauge theory (1970’s)

Feynman, Schwinger, Tomonaga, Dyson

Faddeev-Popov ‘t Hooft-Veltman Slavnov-Taylor

Lee-ZinnJustin Becchi-Rouet-Stora-Tyutin

Scattering amplitudes of non-abelian gauge theory
has been a serious research topic from mid-1980’s until ... now!



Amplitudes in non-abelian gauge theory
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Jet production at colliders

Jets are produced at a rate many orders of magnitude higher
than those of “interesting” events.

n 3 4 5 6 7 ...

#(Feynman) 1 2 10 38 149 ...

reduced counting after color decomposition



Scope of the lecture

(1+3) dimension       ( (1+2)-dimension )

Massless particles

We will mostly focus on ... (but brifely comment on)

Gauge theory            (Gravity)

Tree amplitudes        (Loop amplitudes)

Planar (large N) sector



Massless particle

Lorentz group and its extension to include spinors

SO(1, 3) ' SL(2, C) SO(4) ' SU(2)⇥ SU(2)

SO(2, 2) ' SL(2, R)⇥ SL(2, R)

Fields at a given point

Particle states

(f, ya, Aµ)

finite dimensional, non-unitary representations

infinite dimensional, unitary representations

|pµ, hi
Momentum

Helicity



Momentum and Helicity

h = +1 h = �1

Helicity = angular momentum around the momentum axis
(spin under the SO(2) little group)

Helicity is Lorentz invariant only for massless particles.

h = +1 and h = -1 are related by discrete symmetry like parity
but not by Lorentz transformation.



Gauge redundancy (problem with h = 1 or higher)

Aµ(x) = �µ(p)eip·x

pµ⇥±µ (p) = 0 , ⇥µ(p) � ⇥µ(p) + �pµ (Aµ � Aµ + ⇤µL)

What Feynman diagrams give you“True” amplitude

A++��
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Aµ=0,1,2,3

: (4 components)

|p, h = ±1i : (2 states)

“True” amplitudes are never written down in most QFT textbooks !!! (Exception: Srednicki)



General lessons

Gauge redundancy is inevitable, if we want to keep 
locality and unitarity manifest at the same time. 

But, in Feynman diagram computations, gauge redundancy 
is the main source of computational complexity.
(Individual diagrams are not gauge invariant. 
Gauge invariance is recovered only after summing over diagrams.) 

Explicit computations have shown that, 
quite often, a vast number of Feynman diagrams 
collapse into a simple 1-2 line expressions. 

Could there be an alternative to Feynman calculus 
which reveals the secret behind the enormous simplification?

YES !!



Spinor-helicity variables

Complexify all variables

hiji = eab(li)a(lj)b , [ij] = eȧḃ(l̄i)ȧ(l̄j)ḃ

pµ = (p0,~p)

det(p · s) = (p0)2 � ~p2 = 0 =⇥ paȧ = lal̄ȧ

pµ pµ = (p0)2 � ~p2 = 0

“bi-spinor”

SO(1, 3) ! SL(2)l ⇥ SL(2)l̄ Complexified Lorentz group

Lorentz invariants

Spinors for momenta

p · s =

✓
p0 + p3 p1 � ip2

p1 + ip2 p0 � p3

◆
⌘ paȧ



Polarization vectors revisited

Momentum: 

Introduce an additional reference vector: 

pµ ! paȧ = lal̄ȧ

`µ ! `aȧ = rar̄ȧ

Polarization vectors are now uniquely determined!

R4

(p, `)�plane

e±�plane

orthogonal



Polarization vectors - further remarks

Gauge redundancy has been transferred to 
the ambiguity in the choice of                      .`aȧ = rar̄ȧ

The final “true” amplitude should be gauge invariant:
dependence on r, r̄

Bonus 

Under the “helicity scaling” (l, l̄) ! (tl, t�1l̄) ,

e+ ! t�2e+ , e� ! t+2e�

=) An(tili, t�1
i l̄i, hi) =
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t�2hi
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!
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Color ordering

SU(Nc) gauge group

adjoint color indices:

fundamental indices:

anti-fundamental indices:

a, b, c 2 {1, . . . , N2
c � 1}

i, j, . . . 2 {1, . . . , Nc}

ı̄, ‚̄, . . . 2 {1, . . . , Nc}

Generators of SU(Nc),             ,  satisfy(Ta)i
‚̄

[Ta, Tb] = f ab
cTc

tr(TaTb) = dab

(Ta)i1
‚̄1(Ta)i2

‚̄2 = di1
‚̄2 di2

‚̄1 � 1
Nc

di1
‚̄1 di2

‚̄2



Color ordering

Double-line notation [‘t Hooft ’74]

figures copied from [Dixon 1105.0771]



Color ordering

Trace-based color decomposition

Full amplitude (permutation symm)

“Color-ordered” amplitude
(cyclic symmetry only)

Atree
n (pi, hi, ai) = Â

s2Sn/Zn

Tr(Tas(1) · · · Tas(n) )An(s(1h1), · · · , s(nhn))

Heuristic argument [Dixon 1105.0771]


