Scattering Amplitudes in Gauge Theories

Sangmin Lee
Seoul National University

APCTP-KIAS Summer Institute for Theoretical Physics 2011

$$
\text { Aug. 1~5 } 2011 \text { @ Alpensia Resort }
$$

Lecture 1

Prerequisites

Q One semester course in Quantum Field Theory. (tree-level QED including 2-2 scattering process)
© Lie algebra of $\mathrm{SU}(\mathrm{N})$.

References

Q Special volume of Journal of Physics A
"Scattering Amplitudes in Gauge Theories"

Q A good starting point is [L. Dixon II 05.077 I]

Scattering amplitude

Q What is scattering amplitude?

Use of scattering amplitudes

Q Example: 2 to m-particle differential cross section

$$
\begin{gathered}
S=i T(2 \pi)^{4} \delta^{4}\left(\sum_{i} p_{i}\right) \Longrightarrow d \sigma_{2 \rightarrow m}=\frac{\left|T_{2 \rightarrow m}\right|^{2}}{4\left|\vec{p}_{1}\right|_{\mathrm{CM} \sqrt{s}}} d \Omega_{m} \\
d \Omega_{m} \equiv(2 \pi)^{4} \delta^{4}\left(p_{1}+p_{2}-\sum_{i=1}^{m} p_{i}\right) \prod_{j=1}^{m} \widetilde{d p}_{i}, \quad \widetilde{d p}=\frac{d^{3} \vec{p}}{(2 \pi)^{3} 2 p^{0}}
\end{gathered}
$$

Scattering amplitudes in gauge theories - history

© QED (1940's)
Feynman, Schwinger, Tomonaga, Dyson

Q Non-abelian gauge theory (1970's)
$\begin{array}{ll}\text { Faddeev-Popov } & \text { 't Hooft-Veltman Slavnov-Taylor } \\ \text { Lee-ZinnJustin } & \text { Becchi-Rouet-Stora-Tyutin }\end{array}$

Q Scattering amplitudes of non-abelian gauge theory
has been a serious research topic from mid-1980's until ... now!

Amplitudes in non-abelian gauge theory
Q Jet production at colliders

Q Jets are produced at a rate many orders of magnitude higher than those of "interesting" events.

n	3	4	5	6	7	\ldots
$\#$ (Feynman)	1	2	10	38	149	\ldots

reduced counting after color decomposition

Scope of the lecture

We will mostly focus on ... (but brifely comment on)
© ($1+3$) dimension (($1+2$)-dimension)

Q Gauge theory
(Gravity)

Q Massless particles

Q Tree amplitudes
(Loop amplitudes)

Q Planar (large N) sector

Massless particle

Q Lorentz group and its extension to include spinors

$$
\begin{aligned}
\mathrm{SO}(1,3) \simeq \mathrm{SL}(2, \mathrm{C}) \quad \mathrm{SO}(4) & \simeq \mathrm{SU}(2) \times \mathrm{SU}(2) \\
\mathrm{SO}(2,2) & \simeq \mathrm{SL}(2, \mathbb{R}) \times \mathrm{SL}(2, \mathbb{R})
\end{aligned}
$$

Q Fields at a given point $\quad\left(\phi, \psi_{\alpha}, A_{\mu}\right)$
finite dimensional, non-unitary representations

Q Particle states $\left|p_{\mu}, h\right\rangle_{\text {Helicity }}$ infinite dimensional, unitary representations

Momentum and Helicity

Q Helicity = angular momentum around the momentum axis (spin under the $\mathrm{SO}(2)$ little group)

Q Helicity is Lorentz invariant only for massless particles.

Q $h=+1$ and $h=-1$ are related by discrete symmetry like parity but not by Lorentz transformation.

Gauge redundancy (problem with $\mathrm{h}=\mathrm{I}$ or higher)

$$
\begin{aligned}
A_{\mu=0,1,2,3} & :(4 \text { components }) \\
|p, h= \pm 1\rangle & :(2 \text { states })
\end{aligned}
$$

$$
\begin{aligned}
A_{\mu}(x) & =\epsilon_{\mu}(p) e^{i p \cdot x} \\
p^{\mu} \epsilon_{\mu}^{ \pm}(p) & =0, \quad \epsilon_{\mu}(p) \sim \epsilon_{\mu}(p)+\alpha p_{\mu} \quad\left(A_{\mu} \sim A_{\mu}+\partial_{\mu} \Lambda\right)
\end{aligned}
$$

$$
\mathcal{A}_{4}^{++--}\left(p_{1}, p_{2}, p_{3}, p_{4}\right)=\epsilon_{\mu_{1}}^{+}\left(p_{1}\right) \epsilon_{\mu_{2}}^{+}\left(p_{2}\right) \epsilon_{\mu_{3}}^{-}\left(p_{3}\right) \epsilon_{\mu_{4}}^{-}\left(p_{4}\right)
$$

$$
\uparrow \quad \times \mathcal{A}^{\mu_{1} \mu_{2} \mu_{3} \mu_{4}}\left(p_{1}, p_{2}, p_{3}, p_{4}\right)
$$

"True" amplitude

General lessons

Q Gauge redundancy is inevitable, if we want to keep locality and unitarity manifest at the same time.

Q But, in Feynman diagram computations, gauge redundancy is the main source of computational complexity. (Individual diagrams are not gauge invariant. Gauge invariance is recovered only after summing over diagrams.)

Q Explicit computations have shown that, quite often, a vast number of Feynman diagrams collapse into a simple 1-2 line expressions.

Could there be an alternative to Feynman calculus which reveals the secret behind the enormous simplification?

Spinor-helicity variables

Q Spinors for momenta

$$
\begin{aligned}
& p^{\mu}=\left(p^{0}, \vec{p}\right) \quad p_{\mu} p^{\mu}=\left(p^{0}\right)^{2}-\vec{p}^{2}=0 \\
& p \cdot \sigma=\left(\begin{array}{cc}
p^{0}+p^{3} & p^{1}-i p^{2} \\
p^{1}+i p^{2} & p^{0}-p^{3}
\end{array}\right) \equiv p_{\alpha \dot{\alpha}} \quad \text { "bi-spinor" } \\
& \operatorname{det}(p \cdot \sigma)=\left(p^{0}\right)^{2}-\vec{p}^{2}=0 \quad \Longrightarrow \quad p_{\alpha \dot{\alpha}}=\lambda_{\alpha} \bar{\lambda}_{\dot{\alpha}}
\end{aligned}
$$

Complexify all variables

$$
\begin{array}{lc}
S O(1,3) \rightarrow S L(2)_{\lambda} \times S L(2)_{\bar{\lambda}} & \text { Complexified Lorentz group } \\
\langle i j\rangle=\epsilon^{\alpha \beta}\left(\lambda_{i}\right)_{\alpha}\left(\lambda_{j}\right)_{\beta}, \quad[i j]=\epsilon^{\dot{\alpha} \dot{\beta}}\left(\bar{\lambda}_{i}\right)_{\dot{\alpha}}\left(\bar{\lambda}_{j}\right)_{\dot{\beta}} & \text { Lorentz invariants }
\end{array}
$$

Polarization vectors revisited

(9) Momentum: $p_{\mu} \rightarrow p_{\alpha \dot{\alpha}}=\lambda_{\alpha} \bar{\lambda}_{\dot{\alpha}}$

Q Introduce an additional reference vector: $\ell_{\mu} \rightarrow \ell_{\alpha \dot{\alpha}}=\rho_{\alpha} \bar{\rho}_{\dot{\alpha}}$

Q Polarization vectors are now uniquely determined!

Polarization vectors - further remarks

Q Gauge redundancy has been transferred to the ambiguity in the choice of $\ell_{\alpha \dot{\alpha}}=\rho_{\alpha} \bar{\rho}_{\dot{\alpha}}$.

Q The final "true" amplitude should be gauge invariant: dependence on $\rho, \bar{\rho}$
© Bonus
Under the "helicity scaling" $(\lambda, \bar{\lambda}) \rightarrow\left(t \lambda, t^{-1} \bar{\lambda}\right)$,

$$
\begin{aligned}
& \epsilon^{+} \rightarrow t^{-2} \epsilon^{+}, \quad \epsilon^{-} \rightarrow t^{+2} \epsilon^{-} \\
\Longrightarrow \quad & A_{n}\left(t_{i} \lambda_{i}, t_{i}^{-1} \bar{\lambda}_{i}, h_{i}\right)=\left(\prod_{i=1}^{n} t_{i}^{-2 h_{i}}\right) A_{n}\left(\lambda_{i}, \bar{\lambda}_{i}, h_{i}\right)
\end{aligned}
$$

Color ordering

- $\mathrm{SU}\left(\mathrm{N}_{\mathrm{c}}\right)$ gauge group
adjoint color indices: $\quad a, b, c \in\left\{1, \ldots, N_{c}^{2}-1\right\}$
fundamental indices: $\quad i, j, \ldots \in\left\{1, \ldots, N_{c}\right\}$
anti-fundamental indices: $\bar{\imath}, \bar{\jmath}, \ldots \in\left\{1, \ldots, N_{c}\right\}$
© Generators of $\mathrm{SU}\left(\mathrm{N}_{\mathrm{c}}\right),\left(T^{a}\right)_{i}{ }^{\bar{j}}$, satisfy

$$
\begin{aligned}
& {\left[T^{a}, T^{b}\right]=f^{a b}{ }_{c} T^{c}} \\
& \operatorname{tr}\left(T^{a} T^{b}\right)=\delta^{a b} \\
& \quad\left(T^{a}\right)_{i_{1}}^{\bar{J}_{1}}\left(T^{a}\right)_{i_{2}}{ }^{\bar{J}_{2}}=\delta_{i_{1}}^{\bar{J}_{2}} \delta_{i_{2}}^{\bar{J}_{1}}-\frac{1}{N_{c}} \delta_{i_{1}}^{\bar{J}_{1}} \delta_{i_{2}}^{\bar{J}_{2}}
\end{aligned}
$$

Color ordering

Q Double-line notation ['t Hooft '74]

$$
\begin{aligned}
& \delta_{i}{ }^{\bar{j}}=i \smile \bar{j} \\
& \delta^{a b}=a \ldots b=\mp-\frac{1}{N_{c}} \supset \subset \\
& \left(T^{a}\right)_{i}^{\bar{j}}={ }_{i}^{a} \stackrel{K}{b}_{\bar{j}}
\end{aligned}
$$

Color ordering

Q Trace-based color decomposition

Full amplitude (permutation symm)
"Color-ordered" amplitude (cyclic symmetry only)

$$
A_{n}^{\text {tree }}\left(p_{i}, h_{i}, a_{i}\right)=\sum_{\sigma \in S_{n} / \mathbb{Z}_{n}} \operatorname{Tr}\left(T^{a_{\sigma(1)}} \cdots T^{a_{\sigma(n)}}\right) A_{n}\left(\sigma\left(1^{h_{1}}\right), \cdots, \sigma\left(n^{h_{n}}\right)\right)
$$

Q Heuristic argument [Dixon II 105.077 I]

