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Prerequisites

& One semester course in Quantum Field Theory.
(tree-level QED including 2-2 scattering process)

& Lie algebra of SU(N).

References

& Special volume of Journal of Physics A
“Scattering Amplitudes in Gauge Theories”

@ A good starting point is [L. Dixon |105.0771]



Scattering amplitude
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) What is scattering amplitude?

scattering operator
/ (determined by Hint)

~

asymptotic (multi-particle) states

(determined by Hfrec )



Use of scattering amplitudes

& Example: 2 to m-particle differential cross section
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Scattering amplitudes in gauge theories - history

© QED (1940’s)

Feynman, Schwinger, Tomonaga, Dyson

& Non-abelian gauge theory (1970’s)

Faddeev-Popov ‘t Hooft-Veltman Slavnov-Taylor

Lee-ZinnJustin ~ Becchi-Rouet-Stora-Tyutin

& Scattering amplitudes of non-abelian gauge theory

has been a serious research topic from mid-1980’s until

... Now!



Amplitudes in non-abelian gauge theory
& Jet production at colliders
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& Jets are produced at a rate many orders of magnitude higher
than those of “interesting” events.

n 3 4 5 6 7

#(Feynman) | | 2 10 38 149

reduced counting after color decomposition



Scope of the lecture

We will mostly focus on ... (but brifely comment on)

& (143) dimension  ( (1+2)-dimension )
& Gauge theory (Gravity)

& Massless particles

& Tree amplitudes (Loop amplitudes)

& Planar (large N) sector



Massless particle

© Lorentz group and its extension to include spinors

80(1,3) ~ SL(Z,C) SO(4) ~ SU(2) x SU(2)
SO(2,2) ~ SL(2,R) x SL(2,R)

& Fields at a given point (¢, Ya, Ap)

finite dimensional, non-unitary representations

Momentum

& Particle states !Py, h)
AN Helicity

infinite dimensional, unitary representations



Momentum and Helicity

h=+1 / h=—1
L

& Helicity = angular momentum around the momentum axis
(spin under the SO(2) little group)

& Helicity is Lorentz invariant only for massless particles.

& h=+1and h = -1 are related by discrete symmetry like parity
but not by Lorentz transformation.



Gauge redundancy (problem with h = | or higher)

Ay—0123 @ (4 components)

lp,h = +1) : (2 states)

P%f(l?) =0, eulp) ~eulp) +apy (Ay~ Ay+ 9N\

AT (p1, P2, 3, pa) = €5, (P1)€g, (P2)€y, (P3)ey, (Pa)
[ x AH1H2H3H4 (PL V2, 03, P4)

\

“True” amplitude What Feynman diagrams give you

“True” amplitudes are never written down in most QFT textbooks !!! (Exception: Srednicki)



General lessons

& Gauge redundancy is inevitable, if we want to keep
locality and unitarity manifest at the same time.

& But, in Feynman diagram computations, gauge redundancy
is the main source of computational complexity.

(Individual diagrams are not gauge invariant.
Gauge invariance is recovered only after summing over diagrams.)

&

& Explicit computations have shown that,
quite often, a vast number of Feynman diagrams
collapse into a simple 1-2 line expressions.

Could there be an alternative to Feynman calculus
which reveals the secret behind the enormous simplification?

YES !!



Spinor-helicity variables

& Spinors for momenta

p" = (p°, P) pupt = (p°)* —p* =0
0 3 1 . 2
+ — i
]9-0':<£1+Z;2 ;;O_Z:S>Ep(m “bi-spinor”

det(p-0) = (") — 7> =0 = pusx = Aalg

& Complexify all variables

SO(l, 3) — SL(Z)/\ X SL(Z))‘\ Complexified Lorentz group

<1]> — eaﬁ(/\i)lx(/\j),@ ’ [1]] = P (ZZ)IX(Z])IB Lorentz invariants



Polarization vectors revisited

Q Momentum: Py — Pai = Aala
¢ Introduce an additional reference vector: £, — luy = pufi

4
K e —plane

(p, £)—plane

/

orthogonal

& Polarization vectors are now uniquely determined!



Polarization vectors - further remarks

& Gauge redundancy has been transferred to
the ambiguity in the choice of {x4 = PuOa -

& The final “true” amplitude should be gauge invariant:
dependence on p,0

& Bonus
Under the “helicity scaling” (A, A) — (tA,t711),
et = t72%2et ) e =t

n
(]—[ t 2hi> An(Ai, A, hy)
=1

= Au(tidi, t7 1A By)



Color ordering

@ SU(N.) gauge group
adjoint color indices: a,b,cc{l,..., N>—1}
fundamental indices: i,7,...€{1,...,N:}

anti-fundamental indices: 7,7,... € {1,..., N}

& Generators of SUN.), (T")/, satisfy

[Ta’ Tb] _ fabCTc

tr(TT?) = 6"

Po T — 5. 15, T

(Ta)ilh(Ta)izjz =0 i N, 1

i1



Color ordering

& Double-line notation [‘t Hooft '74]

6iJ — i_<_.7
§% = swoor = ——
a
(Ta)i] = ,/E\T
l J

Fobe = yg%\ = Ti(T4T"1T¢) = gf)%—&&%
b c b c b

figures copied from [Dixon [105.0771]



Color ordering

& Trace-based color decomposition
“Color-ordered” amplitude

i t |
Full amplitude (permutation symm) (cyclic symmetry only)

l l

Affee(i?i,hi,ai) — Z Tr(T%(l) . Taa(n))An(O'(lhl), . ,U(nhn))
ceS,/Zy

& Heuristic argument [Dixon 1105.0771]

SRR

= + permutations



